These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12963736)

  • 1. Reduction of Fe(III) ions complexed to physiological ligands by lipoyl dehydrogenase and other flavoenzymes in vitro: implications for an enzymatic reduction of Fe(III) ions of the labile iron pool.
    Petrat F; Paluch S; Dogruöz E; Dörfler P; Kirsch M; Korth HG; Sustmann R; de Groot H
    J Biol Chem; 2003 Nov; 278(47):46403-13. PubMed ID: 12963736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH-dependent flavoenzymes catalyze one electron reduction of metal ions and molecular oxygen and generate hydroxyl radicals.
    Shi XL; Dalal NS
    FEBS Lett; 1990 Dec; 276(1-2):189-91. PubMed ID: 2176163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superoxide anion production by lipoamide dehydrogenase redox-cycling: effect of enzyme modifiers.
    Grinblat L; Sreider CM; Stoppani AO
    Biochem Int; 1991 Jan; 23(1):83-92. PubMed ID: 1650556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-electron reduction of vanadium(V) by flavoenzymes/NADPH.
    Shi X; Dalal NS
    Arch Biochem Biophys; 1993 Apr; 302(1):300-3. PubMed ID: 8385902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic reduction of labile iron by organelles of the rat liver. Superior role of an NADH-dependent activity in the outer mitochondrial membrane.
    Pamp K; Kerkweg U; Korth HG; Homann F; Rauen U; Sustmann R; de Groot H; Petrat F
    Biochimie; 2008 Oct; 90(10):1591-601. PubMed ID: 18627785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xanthine oxidase- and iron-dependent lipid peroxidation.
    Miller DM; Grover TA; Nayini N; Aust SD
    Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplified determination of lipoyl groups by lipoamide dehydrogenase in the presence of oxidized glutathione.
    Konishi T; Handelman G; Matsugo S; Mathur VV; Tritschler HJ; Packer L
    Biochem Mol Biol Int; 1996 May; 38(6):1155-61. PubMed ID: 8739037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavoenzymes reduce vanadium(V) and molecular oxygen and generate hydroxyl radical.
    Shi XL; Dalal NS
    Arch Biochem Biophys; 1991 Sep; 289(2):355-61. PubMed ID: 1654858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asparagusate dehydrogenases and lipoyl dehydrogenase from asparagus mitochondria. Physical, chemical, and enzymatic properties.
    Yanagawa H; Egami F
    J Biol Chem; 1976 Jun; 251(12):3637-44. PubMed ID: 180003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Pyruvate and α-Ketoglutarate Dehydrogenase Complexes of
    Glasser NR; Wang BX; Hoy JA; Newman DK
    J Biol Chem; 2017 Mar; 292(13):5593-5607. PubMed ID: 28174304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative studies of glutathione reductase and lipoamide dehydrogenase.
    Tsai CS; Templeton DM; Godin JR; Farrell KP; Wand AJ
    Comp Biochem Physiol B; 1988; 90(2):335-9. PubMed ID: 3044690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pH-dependent kinetic model of dihydrolipoamide dehydrogenase from multiple organisms.
    Moxley MA; Beard DA; Bazil JN
    Biophys J; 2014 Dec; 107(12):2993-3007. PubMed ID: 25517164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of Fe(III)ADP complex by liver microsomes.
    Végh M; Marton A; Horváth I
    Biochim Biophys Acta; 1988 Feb; 964(2):146-50. PubMed ID: 3124887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox cycling of bleomycin-Fe(III) and DNA degradation by isolated NADH-cytochrome b5 reductase: involvement of cytochrome b5.
    Mahmutoglu I; Kappus H
    Mol Pharmacol; 1988 Oct; 34(4):578-83. PubMed ID: 2459594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of haloalkene cysteine conjugates on rat renal glutathione reductase and lipoyl dehydrogenase activities.
    Lock EA; Schnellmann RG
    Toxicol Appl Pharmacol; 1990 Jun; 104(1):180-90. PubMed ID: 2360207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative damage of bovine serum albumin and other enzyme proteins by iron-chelate complexes.
    Ogino T; Okada S
    Biochim Biophys Acta; 1995 Dec; 1245(3):359-65. PubMed ID: 8541312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dihydrolipoamide dehydrogenase from porcine heart catalyzes NADH-dependent scavenging of nitric oxide.
    Igamberdiev AU; Bykova NV; Ens W; Hill RD
    FEBS Lett; 2004 Jun; 568(1-3):146-50. PubMed ID: 15196936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome b(5) plays a key role in human microsomal chromium(VI) reduction.
    Jannetto PJ; Antholine WE; Myers CR
    Toxicology; 2001 Feb; 159(3):119-33. PubMed ID: 11223168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyruvate dehydrogenase kinase isoform 2 activity stimulated by speeding up the rate of dissociation of ADP.
    Bao H; Kasten SA; Yan X; Hiromasa Y; Roche TE
    Biochemistry; 2004 Oct; 43(42):13442-51. PubMed ID: 15491151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of ferric complexes with NADH-cytochrome b5 reductase and cytochrome b5: lipid peroxidation, H2O2 generation, and ferric reduction.
    Yang MX; Cederbaum AI
    Arch Biochem Biophys; 1996 Jul; 331(1):69-78. PubMed ID: 8660685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.