These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12963817)

  • 1. Horizontal gene transfer from flowering plants to Gnetum.
    Won H; Renner SS
    Proc Natl Acad Sci U S A; 2003 Sep; 100(19):10824-9. PubMed ID: 12963817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales)--clock calibration when outgroup relationships are uncertain.
    Won H; Renner SS
    Syst Biol; 2006 Aug; 55(4):610-22. PubMed ID: 16969937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of large and diverse angiosperm DNA fragments into Asian Gnetum mitogenomes.
    Wu CS; Wang RJ; Chaw SM
    BMC Biol; 2024 Jun; 22(1):140. PubMed ID: 38915079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reevaluation of the cox1 group I intron in Araceae and angiosperms indicates a history dominated by loss rather than horizontal transfer.
    Cusimano N; Zhang LB; Renner SS
    Mol Biol Evol; 2008 Feb; 25(2):265-76. PubMed ID: 18158323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The internal transcribed spacer of nuclear ribosomal DNA in the gymnosperm Gnetum.
    Won H; Renner SS
    Mol Phylogenet Evol; 2005 Sep; 36(3):581-97. PubMed ID: 16099382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms.
    Löhne C; Borsch T
    Mol Biol Evol; 2005 Feb; 22(2):317-32. PubMed ID: 15496557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants.
    Wu CS; Wang YN; Liu SM; Chaw SM
    Mol Biol Evol; 2007 Jun; 24(6):1366-79. PubMed ID: 17383970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lineage-specific group II intron gains and losses of the mitochondrial rps3 gene in gymnosperms.
    Regina TM; Quagliariello C
    Plant Physiol Biochem; 2010 Aug; 48(8):646-54. PubMed ID: 20605476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequent, phylogenetically local horizontal transfer of the cox1 group I Intron in flowering plant mitochondria.
    Sanchez-Puerta MV; Cho Y; Mower JP; Alverson AJ; Palmer JD
    Mol Biol Evol; 2008 Aug; 25(8):1762-77. PubMed ID: 18524785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications.
    Dombrovska O; Qiu YL
    Mol Phylogenet Evol; 2004 Jul; 32(1):246-63. PubMed ID: 15186811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple recent horizontal transfers of the cox1 intron in Solanaceae and extended co-conversion of flanking exons.
    Sanchez-Puerta MV; Abbona CC; Zhuo S; Tepe EJ; Bohs L; Olmstead RG; Palmer JD
    BMC Evol Biol; 2011 Sep; 11():277. PubMed ID: 21943226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of Photosynthetic Characters in the Evolution of Asian
    Deng N; Hou C; Liu C; Li M; Bartish I; Tian Y; Chen W; Du C; Jiang Z; Shi S
    Front Plant Sci; 2019; 10():39. PubMed ID: 30804953
    [No Abstract]   [Full Text] [Related]  

  • 13. Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella.
    Bergthorsson U; Richardson AO; Young GJ; Goertzen LR; Palmer JD
    Proc Natl Acad Sci U S A; 2004 Dec; 101(51):17747-52. PubMed ID: 15598737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms.
    Sundström J; Carlsbecker A; Svensson ME; Svenson M; Johanson U; Theissen G; Engström P
    Dev Genet; 1999 Sep; 25(3):253-66. PubMed ID: 10528266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids.
    Oxelman B; Yoshikawa N; McConaughy BL; Luo J; Denton AL; Hall BD
    Mol Phylogenet Evol; 2004 Aug; 32(2):462-79. PubMed ID: 15223030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of MADS genes in the gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants.
    Shindo S; Ito M; Ueda K; Kato M; Hasebe M
    Evol Dev; 1999; 1(3):180-90. PubMed ID: 11324103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Widespread horizontal transfer of mitochondrial genes in flowering plants.
    Bergthorsson U; Adams KL; Thomason B; Palmer JD
    Nature; 2003 Jul; 424(6945):197-201. PubMed ID: 12853958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial cox1 gene during evolution of the Araceae family.
    Cho Y; Palmer JD
    Mol Biol Evol; 1999 Sep; 16(9):1155-65. PubMed ID: 10486971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms.
    Nardmann J; Reisewitz P; Werr W
    Mol Biol Evol; 2009 Aug; 26(8):1745-55. PubMed ID: 19387013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny.
    Gugerli F; Sperisen C; Büchler U; Brunner I; Brodbeck S; Palmer JD; Qiu YL
    Mol Phylogenet Evol; 2001 Nov; 21(2):167-75. PubMed ID: 11697913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.