BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 12964195)

  • 1. Development of a multipopulation parallel genetic algorithm for structure solution from powder diffraction data.
    Habershon S; Harris KD; Johnston RL
    J Comput Chem; 2003 Nov; 24(14):1766-74. PubMed ID: 12964195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to determine structures when single crystals cannot be grown: opportunities for structure determination of molecular materials using powder diffraction data.
    Harris KD; Cheung EY
    Chem Soc Rev; 2004 Oct; 33(8):526-38. PubMed ID: 15480476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Counteracting stagnation in genetic algorithm calculations by implementation of a micro genetic algorithm strategy.
    Zhou Z; Harris KD
    Phys Chem Chem Phys; 2008 Dec; 10(48):7262-9. PubMed ID: 19060971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced efficiency of direct-space structure solution from powder X-ray diffraction data in the case of conformationally flexible molecules.
    Hanson AJ; Cheung EY; Harris KD
    J Phys Chem B; 2007 Jun; 111(23):6349-56. PubMed ID: 17516675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of powder diffraction on the structural characterization of organic crystalline materials.
    Tremayne M
    Philos Trans A Math Phys Eng Sci; 2004 Dec; 362(1825):2691-707. PubMed ID: 15539365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the structural properties of a dendrimeric material directly from powder X-ray diffraction data.
    Pan Z; Xu M; Cheung EY; Harris KD; Constable EC; Housecroft CE
    J Phys Chem B; 2006 Jun; 110(24):11620-3. PubMed ID: 16800454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular structure of a D-homoandrostanyl steroid derivative: single crystal and powder diffraction analyses.
    Martinetto P; Terech P; Grand A; Ramasseul R; Dooryhée E; Anne M
    J Phys Chem B; 2006 Aug; 110(31):15127-33. PubMed ID: 16884225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VARICELLA: a variable-cell direct space method for structure determination from powder diffraction data.
    Rapallo A
    J Chem Phys; 2009 Jul; 131(4):044113. PubMed ID: 19655843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residue-based charge flipping: a new variant of an emerging algorithm for structure solution from X-ray diffraction data.
    Zhou Z; Harris KD
    J Phys Chem A; 2008 Jun; 112(22):4863-8. PubMed ID: 18461920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using electron microscopy to complement X-ray powder diffraction data to solve complex crystal structures.
    McCusker LB; Baerlocher C
    Chem Commun (Camb); 2009 Mar; (12):1439-51. PubMed ID: 19277355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex zeolite structure solved by combining powder diffraction and electron microscopy.
    Gramm F; Baerlocher C; McCusker LB; Warrender SJ; Wright PA; Han B; Hong SB; Liu Z; Ohsuna T; Terasaki O
    Nature; 2006 Nov; 444(7115):79-81. PubMed ID: 17080087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A solid-state NMR method for solution of zeolite crystal structures.
    Brouwer DH; Darton RJ; Morris RE; Levitt MH
    J Am Chem Soc; 2005 Jul; 127(29):10365-70. PubMed ID: 16028949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining molecular structures and conformations directly from electron diffraction using a genetic algorithm.
    Habershon S; Zewail AH
    Chemphyschem; 2006 Feb; 7(2):353-62. PubMed ID: 16411250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct structure determination of a multicomponent molecular crystal prepared by a solid-state grinding procedure.
    Cheung EY; Kitchin SJ; Harris KD; Imai Y; Tajima N; Kuroda R
    J Am Chem Soc; 2003 Dec; 125(48):14658-9. PubMed ID: 14640612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping.
    Baerlocher C; Gramm F; Massüger L; McCusker LB; He Z; Hovmöller S; Zou X
    Science; 2007 Feb; 315(5815):1113-6. PubMed ID: 17322057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure determination from powder diffraction data.
    David WI; Shankland K
    Acta Crystallogr A; 2008 Jan; 64(Pt 1):52-64. PubMed ID: 18156673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state supramolecular organization, established directly from powder diffraction data, and photoluminescence efficiency of rigid-core oligothiophene-S,S-dioxides.
    Tedesco E; Della F; Favaretto L; Barbarella G; Albesa-Jové D; Pisignano D; Gigli G; Cingolani R; Harris KD
    J Am Chem Soc; 2003 Oct; 125(40):12277-83. PubMed ID: 14519013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Second SH3 domain of ponsin solved from powder diffraction.
    Margiolaki I; Wright JP; Wilmanns M; Fitch AN; Pinotsis N
    J Am Chem Soc; 2007 Sep; 129(38):11865-71. PubMed ID: 17784760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermotropic liquid crystals based on extended 2,5-disubstituted-1,3,4-oxadiazoles: structure-property relationships, variable-temperature powder X-ray diffraction, and small-angle X-ray scattering studies.
    Han J; Chui SS; Che CM
    Chem Asian J; 2006 Dec; 1(6):814-25. PubMed ID: 17441124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mg(1 + x)Ir(1 - x) (x = 0, 0.037 and 0.054), a binary intermetallic compound with a new orthorhombic structure type determined from powder and single-crystal X-ray diffraction.
    Cerný R; Renaudin G; Favre-Nicolin V; Hlukhyy V; Pöttgen R
    Acta Crystallogr B; 2004 Jun; 60(Pt 3):272-81. PubMed ID: 15148430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.