BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 12964741)

  • 1. Solid-phase reversible immobilization in microfluidic chips for the purification of dye-labeled DNA sequencing fragments.
    Xu Y; Vaidya B; Patel AB; Ford SM; McCarley RL; Soper SA
    Anal Chem; 2003 Jul; 75(13):2975-84. PubMed ID: 12964741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and preconcentration of genomic DNA from whole cell lysates using photoactivated polycarbonate (PPC) microfluidic chips.
    Witek MA; Llopis SD; Wheatley A; McCarley RL; Soper SA
    Nucleic Acids Res; 2006 Jun; 34(10):e74. PubMed ID: 16757572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcapillary reactors using solid-phase DNA sequencing for direct sample introduction into slab gels.
    Xu Y; Bruch RC; Soper SA
    Biotechniques; 2000 May; 28(5):904-8, 910, 912. PubMed ID: 10818696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous flow thermal cycler microchip for DNA cycle sequencing.
    Wang H; Chen J; Zhu L; Shadpour H; Hupert ML; Soper SA
    Anal Chem; 2006 Sep; 78(17):6223-31. PubMed ID: 16944905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated electroosmotically-driven on-line sample purification system for nanoliter DNA sequencing by capillary electrophoresis.
    He Y; Pang HM; Yeung ES
    J Chromatogr A; 2000 Oct; 894(1-2):179-90. PubMed ID: 11100861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-line nanoliter cycle sequencing reaction with capillary zone electrophoresis purification for DNA sequencing.
    Xue G; Pang HM; Yeung ES
    J Chromatogr A; 2001 Apr; 914(1-2):245-56. PubMed ID: 11358219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative base-calling algorithm for DNA sequencing based on four-label multicolor detection.
    Song JM; Yeung ES
    Electrophoresis; 2000 Mar; 21(4):807-15. PubMed ID: 10733226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field-inversion electrophoresis on a microchip device.
    Ueda M; Endo Y; Abe H; Kuyama H; Nakanishi H; Arai A; Baba Y
    Electrophoresis; 2001 Jan; 22(2):217-21. PubMed ID: 11288887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-high-speed DNA sequencing using capillary electrophoresis chips.
    Woolley AT; Mathies RA
    Anal Chem; 1995 Oct; 67(20):3676-80. PubMed ID: 8644919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sample purification method for rugged and high-performance DNA sequencing by capillary electrophoresis using replaceable polymer solutions. A. Development of the cleanup protocol.
    Ruiz-Martinez MC; Salas-Solano O; Carrilho E; Kotler L; Karger BL
    Anal Chem; 1998 Apr; 70(8):1516-27. PubMed ID: 9569761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexed fluorescence detection in microfabricated devices with both time-resolved and spectral-discrimination capabilities using near-infrared fluorescence.
    Zhu L; Stryjewski WJ; Soper SA
    Anal Biochem; 2004 Jul; 330(2):206-18. PubMed ID: 15203326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic bead purification of labeled DNA fragments for high-throughput capillary electrophoresis sequencing.
    Elkin C; Kapur H; Smith T; Humphries D; Pollard M; Hammon N; Hawkins T
    Biotechniques; 2002 Jun; 32(6):1296, 1298-1300, 1302. PubMed ID: 12074160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A titer plate-based polymer microfluidic platform for high throughput nucleic acid purification.
    Park DS; Hupert ML; Witek MA; You BH; Datta P; Guy J; Lee JB; Soper SA; Nikitopoulos DE; Murphy MC
    Biomed Microdevices; 2008 Feb; 10(1):21-33. PubMed ID: 17659445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput plasmid purification for capillary sequencing.
    Elkin CJ; Richardson PM; Fourcade HM; Hammon NM; Pollard MJ; Predki PF; Glavina T; Hawkins TL
    Genome Res; 2001 Jul; 11(7):1269-74. PubMed ID: 11435410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-phase method for the purification of DNA sequencing reactions.
    Tong X; Smith LM
    Anal Chem; 1992 Nov; 64(22):2672-7. PubMed ID: 1294003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A versatile microfabricated platform for electrophoresis of double- and single-stranded DNA.
    Ugaz VM; Lin R; Srivastava N; Burke DT; Burns MA
    Electrophoresis; 2003 Jan; 24(1-2):151-7. PubMed ID: 12652585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated continuous flow polymerase chain reaction and micro-capillary electrophoresis system with bioaffinity preconcentration.
    Njoroge SK; Witek MA; Battle KN; Immethun VE; Hupert ML; Soper SA
    Electrophoresis; 2011 Nov; 32(22):3221-32. PubMed ID: 22038569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining dye-induced DNA mobility shifts for DNA sequencing fragments by capillary electrophoresis.
    Bashkin J
    Methods Mol Biol; 2001; 162():95-107. PubMed ID: 11217360
    [No Abstract]   [Full Text] [Related]  

  • 19. Time-resolved fluorescence imaging of slab gels for lifetime base-calling in DNA sequencing applications.
    Lassiter SJ; Stryjewski W; Legendre BL; Erdmann R; Wahl M; Wurm J; Peterson R; Middendorf L; Soper SA
    Anal Chem; 2000 Nov; 72(21):5373-82. PubMed ID: 11080890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of sequencing conditions using near-infrared lifetime identification methods in capillary gel electrophoresis.
    Lassiter SJ; Stryjewski W; Owens CV; Flanagan JH; Hammer RP; Khan S; Soper SA
    Electrophoresis; 2002 May; 23(10):1480-9. PubMed ID: 12116159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.