These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 12965029)
1. Birds' tails do act like delta wings but delta-wing theory does not always predict the forces they generate. Evans MR Proc Biol Sci; 2003 Jul; 270(1522):1379-85. PubMed ID: 12965029 [TBL] [Abstract][Full Text] [Related]
2. How do birds' tails work? Delta-wing theory fails to predict tail shape during flight. Evans MR; Rosén M; Park KJ; Hedenström A Proc Biol Sci; 2002 May; 269(1495):1053-7. PubMed ID: 12028763 [TBL] [Abstract][Full Text] [Related]
3. Animal flight dynamics I. Stability in gliding flight. Thomas AL; Taylor GK J Theor Biol; 2001 Oct; 212(3):399-424. PubMed ID: 11829360 [TBL] [Abstract][Full Text] [Related]
8. Steady as they hover: kinematics of kestrel wing and tail morphing during hovering flights. Martinez Groves-Raines M; Yi G; Penn M; Watkins S; Windsor S; Mohamed A J Exp Biol; 2024 Aug; 227(15):. PubMed ID: 39111742 [TBL] [Abstract][Full Text] [Related]
11. The function of the alula in avian flight. Lee SI; Kim J; Park H; Jabłoński PG; Choi H Sci Rep; 2015 May; 5():9914. PubMed ID: 25951056 [TBL] [Abstract][Full Text] [Related]
12. Tail effects on yaw stability in birds. Sachs G J Theor Biol; 2007 Dec; 249(3):464-72. PubMed ID: 17904581 [TBL] [Abstract][Full Text] [Related]
13. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil. Johnston J; Gopalarathnam A Bioinspir Biomim; 2012 Sep; 7(3):036003. PubMed ID: 22498691 [TBL] [Abstract][Full Text] [Related]
14. How swifts control their glide performance with morphing wings. Lentink D; Müller UK; Stamhuis EJ; de Kat R; van Gestel W; Veldhuis LL; Henningsson P; Hedenström A; Videler JJ; van Leeuwen JL Nature; 2007 Apr; 446(7139):1082-5. PubMed ID: 17460673 [TBL] [Abstract][Full Text] [Related]
15. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. Kruyt JW; van Heijst GF; Altshuler DL; Lentink D J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788539 [TBL] [Abstract][Full Text] [Related]
16. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings. Zhao L; Deng X; Sane SP Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729 [TBL] [Abstract][Full Text] [Related]
17. Scaling trends of bird's alular feathers in connection to leading-edge vortex flow over hand-wing. Linehan T; Mohseni K Sci Rep; 2020 May; 10(1):7905. PubMed ID: 32404925 [TBL] [Abstract][Full Text] [Related]
18. Dynamic pressure maps for wings and tails of pigeons in slow, flapping flight, and their energetic implications. Usherwood JR; Hedrick TL; McGowan CP; Biewener AA J Exp Biol; 2005 Jan; 208(Pt 2):355-69. PubMed ID: 15634854 [TBL] [Abstract][Full Text] [Related]
19. Thermal impact of migrating birds' wing color on their flight performance: Possibility of new generation of biologically inspired drones. Hassanalian M; Abdelmoula H; Ben Ayed S; Abdelkefi A J Therm Biol; 2017 May; 66():27-32. PubMed ID: 28477907 [TBL] [Abstract][Full Text] [Related]
20. Agile perching maneuvers in birds and morphing-wing drones. Wüest V; Jeger S; Feroskhan M; Ajanic E; Bergonti F; Floreano D Nat Commun; 2024 Sep; 15(1):8330. PubMed ID: 39333119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]