BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12965187)

  • 1. CCK-nitric oxide interaction in rat cortex, striatum and pallidum.
    Ferraro G; Sardo P; Di Giovanni G; Di Maio R; La Grutta V
    Comp Biochem Physiol C Toxicol Pharmacol; 2003 Aug; 135(4):425-33. PubMed ID: 12965187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CCK-8S systemic administration blocks the 7-nitroindazole-induced effects on the EEG of striatum and globus pallidus: a FFT analysis in the rat.
    Ferraro G; Sardo P; Di Giovanni G; Fileccia R; La Grutta V
    In Vivo; 2004; 18(3):317-23. PubMed ID: 15341187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholecystokinin-GABA interactions in rat striatum.
    Rakovska A
    Neuropeptides; 1995 Nov; 29(5):257-62. PubMed ID: 8587661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholecystokinin CCK2 receptors mediate the peptide's inhibitory actions on the contractile activity of human distal colon via the nitric oxide pathway.
    Fornai M; Colucci R; Antonioli L; Crema F; Buccianti P; Chiarugi M; Baschiera F; Ghisu N; Tuccori M; Blandizzi C; Del Tacca M
    Br J Pharmacol; 2007 Aug; 151(8):1246-53. PubMed ID: 17572695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Administration of cholecystokinin sulphated octapeptide (CCK-8S) induces changes on rat amino acid tissue levels and on a behavioral test for anxiety.
    Acosta GB
    Gen Pharmacol; 1998 Oct; 31(4):637-41. PubMed ID: 9792229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cholecystokinin on acetylcholine turnover and dopamine release in the rat striatum and cortex.
    Cosi C; Altar AC; Wood PL
    Eur J Pharmacol; 1989 Jun; 165(2-3):209-14. PubMed ID: 2776829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide production in striatum and pallidum of cirrhotic rats.
    Montes S; Pérez-Severiano F; Vergara P; Segovia J; Ríos C; Muriel P
    Neurochem Res; 2006 Jan; 31(1):11-20. PubMed ID: 16474992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of acetylcholine release by cholecystokinin in striatum: receptor specificity; role of dopaminergic neuronal activity.
    Petkova-Kirova P; Giovannini MG; Kalfin R; Rakovska A
    Brain Res Bull; 2012 Dec; 89(5-6):177-84. PubMed ID: 22981453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feed-forward excitation of striatal neuron activity by frontal cortical activation of nitric oxide signaling in vivo.
    Ondracek JM; Dec A; Hoque KE; Lim SA; Rasouli G; Indorkar RP; Linardakis J; Klika B; Mukherji SJ; Burnazi M; Threlfell S; Sammut S; West AR
    Eur J Neurosci; 2008 Apr; 27(7):1739-54. PubMed ID: 18371082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the role of "enkephalinase" in cholecystokinin inactivation.
    Zuzel KA; Rose C; Schwartz JC
    Neuroscience; 1985 May; 15(1):149-58. PubMed ID: 3892359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholecystokinin attenuates basal and drug-induced increases of limbic and striatal dopamine release.
    Altar CA; Boyar WC; Oei E; Wood PL
    Brain Res; 1988 Sep; 460(1):76-82. PubMed ID: 3219572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in local cerebral glucose utilization during electrical stimulation of the striatum and globus pallidus in rats.
    Aiko Y; Hosokawa S; Shima F; Kato M; Kitamura K
    Brain Res; 1988 Feb; 442(1):43-52. PubMed ID: 3359255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of sulfated cholecystokinin octapeptide and cholecystokinin tetrapeptide in rat behavior after blockade of nitric oxide synthase by L-NAME.
    Hoły Z; Wiśniewski K
    Rocz Akad Med Bialymst; 1998; 43():250-70. PubMed ID: 9972062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide-induced inhibition on striatal cells and excitation on globus pallidus neurons: a microiontophoretic study in the rat.
    Sardo P; Ferraro G; Di Giovanni G; La Grutta V
    Neurosci Lett; 2003 Jun; 343(2):101-4. PubMed ID: 12759174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The distribution of the globus pallidus neurons with input from various cortical areas in the monkeys.
    Yoshida S; Nambu A; Jinnai K
    Brain Res; 1993 May; 611(1):170-4. PubMed ID: 8518946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversed behavioral effect of cholecystokinin after frontal decortication in rats.
    Itoh S; Katsuura G; Itoh T; Morimoto T
    Life Sci; 1994; 55(11):PL213-6. PubMed ID: 8072383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A possible interaction between CCKergic and GABAergic systems in the rat brain.
    Acosta GB
    Comp Biochem Physiol C Toxicol Pharmacol; 2001 Jan; 128(1):11-7. PubMed ID: 11166669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholecystokinin-GABA interactions in rodent cortex: analyses of cholecystokinin effects on K(+)- and L-glutamate-induced release of [3H]GABA from rat cortical slices and cultured mouse cortical neurones.
    Hickling YM; Cheung NS; Larm JA; Cowen MS; Shulkes A; Beart PM
    Neurochem Int; 1997 Feb; 30(2):171-9. PubMed ID: 9017664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrergic neurons make synapses on dual-input dendritic spines of neurons in the cerebral cortex and the striatum of the rat: implication for a postsynaptic action of nitric oxide.
    Sancesario G; Morello M; Reiner A; Giacomini P; Massa R; Schoen S; Bernardi G
    Neuroscience; 2000; 99(4):627-42. PubMed ID: 10974426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of nitric oxide in rotenone-induced nigro-striatal injury.
    He Y; Imam SZ; Dong Z; Jankovic J; Ali SF; Appel SH; Le W
    J Neurochem; 2003 Sep; 86(6):1338-45. PubMed ID: 12950443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.