These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12965187)

  • 21. Cholecystokinin-octapeptide enhances synaptic activity in neurons cultured from rat cerebral cortex.
    Delfs JR; Dichter MA
    Peptides; 1985; 6 Suppl 1():139-44. PubMed ID: 4096748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of nitric oxide on the spontaneous activity of globus pallidus neurones in the rat.
    Sardo P; Ferraro G; Di Giovanni G; Galati S; La Grutta V
    J Neural Transm (Vienna); 2002 Nov; 109(11):1373-89. PubMed ID: 12454734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of fluidity of membranes on the guanyl nucleotide-dependent binding of cholecystokinin-8S to rat brain cortical membranes.
    Rinken A; Harro J; Engström L; Oreland L
    Biochem Pharmacol; 1998 Feb; 55(4):423-31. PubMed ID: 9514076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of cholecystokinin octapeptide on endogenous amino acid release from the rat ventromedial nucleus of the hypothalamus and striatum.
    Barnes S; Whistler HL; Hughes J; Woodruff GN; Hunter JC
    J Neurochem; 1991 Apr; 56(4):1409-16. PubMed ID: 2002350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of hyperbaric oxygenation on electrical activity of globus pallidus and neostriatum.
    Blackburn JG; Ogilvie RW; Balentine JD
    Exp Neurol; 1977 Jul; 56(1):158-67. PubMed ID: 862687
    [No Abstract]   [Full Text] [Related]  

  • 26. Central cholecystokinin octapeptide reduces glucose utilization in subcortical but not cortical rat brain.
    Tamminga CA; Tanimoto K; Kuo S; Beck M; Chase TN
    Eur J Pharmacol; 1987 Jul; 139(2):237-41. PubMed ID: 3653246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dorsal pallidum as a functional motor output of the corpus striatum.
    Amalric M; Koob GF
    Brain Res; 1989 Apr; 483(2):389-94. PubMed ID: 2706530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elevation of Met-enkephalin-like immunoreactivity in the rat striatum and globus pallidus following the focal injection of excitotoxins.
    Ruzicka BB; Jhamandas K
    Brain Res; 1990 Dec; 536(1-2):227-39. PubMed ID: 2150770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in glutamic acid decarboxylase mRNA in the pallidum of the rat following unilateral damage of the striatum and overlying cortex.
    Najlerahim A; Pearson RC
    Exp Neurol; 1992 Dec; 118(3):352-6. PubMed ID: 1306491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The projection from the striatum to the nucleus basalis in the rat: an electron microscopic study.
    Henderson Z
    Neuroscience; 1997 Jun; 78(4):943-55. PubMed ID: 9174063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABA(A) receptors in vivo.
    Paladini CA; Celada P; Tepper JM
    Neuroscience; 1999 Mar; 89(3):799-812. PubMed ID: 10199614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrophysiological effects of cholecystokinin octapeptide on identified rat nigrostriatal dopaminergic neurons.
    Freeman AS; Chiodo LA
    Brain Res; 1988 Jan; 439(1-2):266-74. PubMed ID: 3359189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for somatostatin-containing fibers projecting from the pallidal complex to the striatum of the rat.
    Widmann R; Mensdorff-Pouilly N; Pfaller K; Sperk G
    J Neurochem; 1987 Jun; 48(6):1857-61. PubMed ID: 2883260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of [3H]-dopamine binding by cholecystokinin octapeptide (CCK-8).
    Murphy RB; Schuster DI
    Peptides; 1982; 3(3):539-43. PubMed ID: 6289286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuronal activity in the striatum and pallidum of primates related to the execution of externally cued reaching movements.
    Jaeger D; Gilman S; Aldridge JW
    Brain Res; 1995 Oct; 694(1-2):111-27. PubMed ID: 8974634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effects and mechanisms of cholecystokinin octapeptide on hippocampal injury during endotoxic shock].
    Wei P; Ling YL; Niu ZY; Duan GC; Yang SF
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2006 May; 22(2):186-9. PubMed ID: 21162237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frontal cortical afferents facilitate striatal nitric oxide transmission in vivo via a NMDA receptor and neuronal NOS-dependent mechanism.
    Sammut S; Park DJ; West AR
    J Neurochem; 2007 Nov; 103(3):1145-56. PubMed ID: 17666041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the origin of striatal cholecystokinin release: studies with in vivo microdialysis.
    You ZB; Herrera-Marschitz M; Brodin E; Meana JJ; Morino P; Hökfelt T; Silveira R; Goiny M; Ungerstedt U
    J Neurochem; 1994 Jan; 62(1):76-85. PubMed ID: 7903356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo studies on the enhancement of cholecystokinin release in the rat striatum by dopamine depletion.
    Butcher SP; Varro A; Kelly JS; Dockray GJ
    Brain Res; 1989 Dec; 505(1):119-22. PubMed ID: 2611663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The pattern of glutamate-induced nitric oxide dynamics in vivo and its correlation with nNOS expression in rat hippocampus, cerebral cortex and striatum.
    Lourenço CF; Ferreira NR; Santos RM; Lukacova N; Barbosa RM; Laranjinha J
    Brain Res; 2014 Mar; 1554():1-11. PubMed ID: 24495843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.