BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12965237)

  • 1. The Kir6.1-protein, a pore-forming subunit of ATP-sensitive potassium channels, is prominently expressed by giant cholinergic interneurons in the striatum of the rat brain.
    Thomzig A; Prüss H; Veh RW
    Brain Res; 2003 Oct; 986(1-2):132-8. PubMed ID: 12965237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kir2 potassium channels in rat striatum are strategically localized to control basal ganglia function.
    Prüss H; Wenzel M; Eulitz D; Thomzig A; Karschin A; Veh RW
    Brain Res Mol Brain Res; 2003 Feb; 110(2):203-19. PubMed ID: 12591157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain.
    Thomzig A; Laube G; Prüss H; Veh RW
    J Comp Neurol; 2005 Apr; 484(3):313-30. PubMed ID: 15739238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels.
    Thomzig A; Wenzel M; Karschin C; Eaton MJ; Skatchkov SN; Karschin A; Veh RW
    Mol Cell Neurosci; 2001 Dec; 18(6):671-90. PubMed ID: 11749042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kir6.1/K-ATP channel on astrocytes protects against dopaminergic neurodegeneration in the MPTP mouse model of Parkinson's disease via promoting mitophagy.
    Hu ZL; Sun T; Lu M; Ding JH; Du RH; Hu G
    Brain Behav Immun; 2019 Oct; 81():509-522. PubMed ID: 31288070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of pore-forming subunit of the ATP-sensitive K(+)-channel, Kir6.2, in rat brain neurons and glial cells.
    Zhou M; Tanaka O; Suzuki M; Sekiguchi M; Takata K; Kawahara K; Abe H
    Brain Res Mol Brain Res; 2002 May; 101(1-2):23-32. PubMed ID: 12007828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus.
    Zawar C; Plant TD; Schirra C; Konnerth A; Neumcke B
    J Physiol; 1999 Jan; 514 ( Pt 2)(Pt 2):327-41. PubMed ID: 9852317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subunit composition of ATP-sensitive potassium channels in mitochondria of rat hearts.
    Cuong DV; Kim N; Joo H; Youm JB; Chung JY; Lee Y; Park WS; Kim E; Park YS; Han J
    Mitochondrion; 2005 Apr; 5(2):121-33. PubMed ID: 16050978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PKA-mediated phosphorylation of the human K(ATP) channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation.
    Béguin P; Nagashima K; Nishimura M; Gonoi T; Seino S
    EMBO J; 1999 Sep; 18(17):4722-32. PubMed ID: 10469651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberrant expression of the pore-forming K
    Griffith CM; Xie MX; Qiu WY; Sharp AA; Ma C; Pan A; Yan XX; Patrylo PR
    Neuroscience; 2016 Nov; 336():81-101. PubMed ID: 27586053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of a novel member of the ATP-sensitive K+ channel subunit family, Kir6.3, in zebrafish.
    Zhang C; Miki T; Shibasaki T; Yokokura M; Saraya A; Seino S
    Physiol Genomics; 2006 Feb; 24(3):290-7. PubMed ID: 16317080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycogen synthase kinase-3 reduces acetylcholine level in striatum via disturbing cellular distribution of choline acetyltransferase in cholinergic interneurons in rats.
    Zhao L; Chu CB; Li JF; Yang YT; Niu SQ; Qin W; Hao YG; Dong Q; Guan R; Hu WL; Wang Y
    Neuroscience; 2013; 255():203-11. PubMed ID: 24121130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulated expression of adenosine triphosphate-sensitive potassium channel subunits in pancreatic beta-cells.
    Moritz W; Leech CA; Ferrer J; Habener JF
    Endocrinology; 2001 Jan; 142(1):129-38. PubMed ID: 11145575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proximal C-terminal domain of sulphonylurea receptor 2A interacts with pore-forming Kir6 subunits in KATP channels.
    Rainbow RD; James M; Hudman D; Al Johi M; Singh H; Watson PJ; Ashmole I; Davies NW; Lodwick D; Norman RI
    Biochem J; 2004 Apr; 379(Pt 1):173-81. PubMed ID: 14672537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antidiabetic sulphonylureas stimulate acetylcholine release from striatal cholinergic interneurones through inhibition of K(ATP) channel activity.
    Lee K; Brownhill V; Richardson PJ
    J Neurochem; 1997 Oct; 69(4):1774-6. PubMed ID: 9326309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KATP channel subunits are expressed in the epididymal epithelium in several mammalian species.
    Lybaert P; Vanbellinghen AM; Quertinmont E; Petein M; Meuris S; Lebrun P
    Biol Reprod; 2008 Aug; 79(2):253-61. PubMed ID: 18434629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Severe congenital hyperinsulinism caused by a mutation in the Kir6.2 subunit of the adenosine triphosphate-sensitive potassium channel impairing trafficking and function.
    Marthinet E; Bloc A; Oka Y; Tanizawa Y; Wehrle-Haller B; Bancila V; Dubuis JM; Philippe J; Schwitzgebel VM
    J Clin Endocrinol Metab; 2005 Sep; 90(9):5401-6. PubMed ID: 15998776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iptkalim inhibits cocaine challenge-induced enhancement of dopamine levels in nucleus accumbens and striatum of rats by up-regulating Kir6.1 and Kir6.2 mRNA expression.
    Liu Y; He HR; Ding JH; Gu B; Wang H; Hu G
    Acta Pharmacol Sin; 2003 Jun; 24(6):527-33. PubMed ID: 12791178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single residue (K332A) substitution in Kir6.2 abolishes the stimulatory effect of long-chain acyl-CoA esters: indications for a long-chain acyl-CoA ester binding motif.
    Bränström R; Leibiger IB; Leibiger B; Klement G; Nilsson J; Arhem P; Aspinwall CA; Corkey BE; Larsson O; Berggren PO
    Diabetologia; 2007 Aug; 50(8):1670-7. PubMed ID: 17522836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of Kir6.2/SUR1 potassium channels rescues diminishing of DA neurons via decreasing iron accumulation in PD.
    Zhang Q; Li C; Zhang T; Ge Y; Han X; Sun S; Ding J; Lu M; Hu G
    Mol Cell Neurosci; 2018 Oct; 92():164-176. PubMed ID: 30171894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.