BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 12965888)

  • 21. Urea transport in initial IMCD of rats fed a low-protein diet: functional properties and mRNA abundance.
    Ashkar ZM; Martial S; Isozaki T; Price SR; Sands JM
    Am J Physiol; 1995 Jun; 268(6 Pt 2):F1218-23. PubMed ID: 7611462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium.
    Sands JM; Knepper MA
    J Clin Invest; 1987 Jan; 79(1):138-47. PubMed ID: 3793921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adenosine triphosphate inhibits endothelin-1 production by rat inner medullary collecting duct cells.
    Hughes AK; Stricklett PK; Kishore BK; Kohan DE
    Exp Biol Med (Maywood); 2006 Jun; 231(6):1006-9. PubMed ID: 16741039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endothelin synthesis by porcine inner medullary collecting duct cells. Effects of hormonal and osmotic stimuli.
    Migas I; Bäcker A; Meyer-Lehnert H; Kramer HJ
    Am J Hypertens; 1995 Jul; 8(7):748-52. PubMed ID: 7546502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vasopressin-elicited water and urea permeabilities are altered in IMCD in hypercalcemic rats.
    Sands JM; Flores FX; Kato A; Baum MA; Brown EM; Ward DT; Hebert SC; Harris HW
    Am J Physiol; 1998 May; 274(5):F978-85. PubMed ID: 9612337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atrial natriuretic peptide and nitric oxide signaling antagonizes vasopressin-mediated water permeability in inner medullary collecting duct cells.
    Klokkers J; Langehanenberg P; Kemper B; Kosmeier S; von Bally G; Riethmüller C; Wunder F; Sindic A; Pavenstädt H; Schlatter E; Edemir B
    Am J Physiol Renal Physiol; 2009 Sep; 297(3):F693-703. PubMed ID: 19570884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The nitric oxide donors, SNAP and DEA/NO, exert a negative inotropic effect in rat cardiomyocytes which is independent of cyclic GMP elevation.
    Sandirasegarane L; Diamond J
    J Mol Cell Cardiol; 1999 Apr; 31(4):799-808. PubMed ID: 10329207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of hyperosmolality on ANP-stimulated cGMP generation in rat inner medullary collecting duct.
    Shinohara M; Nonoguchi H; Ujiie K; Terada Y; Owada A; Tomita K; Marumo F
    Kidney Int; 1994 May; 45(5):1362-8. PubMed ID: 7915340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction between superoxide anion and nitric oxide in the regulation of vascular endothelial function.
    Laight DW; Kaw AV; Carrier MJ; Anggård EE
    Br J Pharmacol; 1998 May; 124(1):238-44. PubMed ID: 9630365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of cyclic guanylate monophosphate in nitric oxide-induced injury to rat small intestinal epithelial cells.
    Tepperman BL; Abrahamson TD; Soper BD
    J Pharmacol Exp Ther; 1998 Mar; 284(3):929-33. PubMed ID: 9495851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ghrelin induces growth hormone secretion via a nitric oxide/cGMP signalling pathway.
    Rodríguez-Pacheco F; Luque RM; Tena-Sempere M; Malagón MM; Castaño JP
    J Neuroendocrinol; 2008 Mar; 20(3):406-12. PubMed ID: 18208548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involvement of the nitric oxide-cyclic GMP pathway and neuronal nitric oxide synthase in ATP-induced Ca2+ signalling in cochlear inner hair cells.
    Shen J; Harada N; Nakazawa H; Yamashita T
    Eur J Neurosci; 2005 Jun; 21(11):2912-22. PubMed ID: 15978003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts.
    Calderone A; Thaik CM; Takahashi N; Chang DL; Colucci WS
    J Clin Invest; 1998 Feb; 101(4):812-8. PubMed ID: 9466976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An independent effect of osmolality on urea transport in rat terminal inner medullary collecting ducts.
    Sands JM; Schrader DC
    J Clin Invest; 1991 Jul; 88(1):137-42. PubMed ID: 1905326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aldosterone does not alter endothelin B receptor signaling in the inner medullary collecting duct.
    Ramkumar N; Stuart D; Yang T; Kohan DE
    Physiol Rep; 2017 Mar; 5(5):. PubMed ID: 28270594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endothelin-1 inhibits AVP-stimulated osmotic water permeability in rat inner medullary collecting duct.
    Oishi R; Nonoguchi H; Tomita K; Marumo F
    Am J Physiol; 1991 Dec; 261(6 Pt 2):F951-6. PubMed ID: 1661085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The regulation of blood perfusion in the renal cortex and medulla by reactive oxygen species and nitric oxide in the anaesthetised rat.
    Ahmeda AF; Johns EJ
    Acta Physiol (Oxf); 2012 Mar; 204(3):443-50. PubMed ID: 21827636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of PGE(2) in alpha(2)-induced inhibition of AVP- and cAMP-stimulated H(2)O, Na(+), and urea transport in rat IMCD.
    Rouch AJ; Kudo LH
    Am J Physiol Renal Physiol; 2000 Aug; 279(2):F294-301. PubMed ID: 10919849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of furosemide on water and urea transport in cortical and inner medullary collecting duct.
    Kudo LH; van Baak AA; Rocha AS
    Kidney Int; 1990 May; 37(5):1248-55. PubMed ID: 2345423
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of glutaraldehyde fixation on renal tubular function. I. Preservation of vasopressin-stimulated water and urea pathways in rat papillary collecting duct.
    Kondo Y; Imai M
    Pflugers Arch; 1987 May; 408(5):479-83. PubMed ID: 3110736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.