BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 12966101)

  • 1. Crystal structure of the Citrobacter freundii dihydroxyacetone kinase reveals an eight-stranded alpha-helical barrel ATP-binding domain.
    Siebold C; Arnold I; Garcia-Alles LF; Baumann U; Erni B
    J Biol Chem; 2003 Nov; 278(48):48236-44. PubMed ID: 12966101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the nucleotide-binding subunit DhaL of the Escherichia coli dihydroxyacetone kinase.
    Oberholzer AE; Schneider P; Baumann U; Erni B
    J Mol Biol; 2006 Jun; 359(3):539-45. PubMed ID: 16647083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoenolpyruvate- and ATP-dependent dihydroxyacetone kinases: covalent substrate-binding and kinetic mechanism.
    Garcia-Alles LF; Siebold C; Nyffeler TL; Flükiger-Brühwiler K; Schneider P; Bürgi HB; Baumann U; Erni B
    Biochemistry; 2004 Oct; 43(41):13037-45. PubMed ID: 15476397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases.
    Erni B; Siebold C; Christen S; Srinivas A; Oberholzer A; Baumann U
    Cell Mol Life Sci; 2006 Apr; 63(7-8):890-900. PubMed ID: 16505971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mechanism of covalent substrate binding in the x-ray structure of subunit K of the Escherichia coli dihydroxyacetone kinase.
    Siebold C; García-Alles LF; Erni B; Baumann U
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8188-92. PubMed ID: 12813127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and mechanistic insight into covalent substrate binding by Escherichia coli dihydroxyacetone kinase.
    Shi R; McDonald L; Cui Q; Matte A; Cygler M; Ekiel I
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1302-7. PubMed ID: 21209328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From ATP as substrate to ADP as coenzyme: functional evolution of the nucleotide binding subunit of dihydroxyacetone kinases.
    Bächler C; Flükiger-Brühwiler K; Schneider P; Bähler P; Erni B
    J Biol Chem; 2005 May; 280(18):18321-5. PubMed ID: 15753087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EDD, a novel phosphotransferase domain common to mannose transporter EIIA, dihydroxyacetone kinase, and DegV.
    Kinch LN; Cheek S; Grishin NV
    Protein Sci; 2005 Feb; 14(2):360-7. PubMed ID: 15632288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor.
    Gutknecht R; Beutler R; Garcia-Alles LF; Baumann U; Erni B
    EMBO J; 2001 May; 20(10):2480-6. PubMed ID: 11350937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational changes during the catalytic cycle of gluconate kinase as revealed by X-ray crystallography.
    Kraft L; Sprenger GA; Lindqvist Y
    J Mol Biol; 2002 May; 318(4):1057-69. PubMed ID: 12054802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of shikimate kinase from Mycobacterium tuberculosis reveals the dynamic role of the LID domain in catalysis.
    Gu Y; Reshetnikova L; Li Y; Wu Y; Yan H; Singh S; Ji X
    J Mol Biol; 2002 Jun; 319(3):779-89. PubMed ID: 12054870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii.
    Daniel R; Stuertz K; Gottschalk G
    J Bacteriol; 1995 Aug; 177(15):4392-401. PubMed ID: 7635824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of dephospho-coenzyme A kinase from Haemophilus influenzae.
    Obmolova G; Teplyakov A; Bonander N; Eisenstein E; Howard AJ; Gilliland GL
    J Struct Biol; 2001 Nov; 136(2):119-25. PubMed ID: 11886213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of Schizosaccharomyces pombe riboflavin kinase reveals a novel ATP and riboflavin-binding fold.
    Bauer S; Kemter K; Bacher A; Huber R; Fischer M; Steinbacher S
    J Mol Biol; 2003 Mar; 326(5):1463-73. PubMed ID: 12595258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site.
    Harris SF; Shiau AK; Agard DA
    Structure; 2004 Jun; 12(6):1087-97. PubMed ID: 15274928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of human riboflavin kinase reveals a beta barrel fold and a novel active site arch.
    Karthikeyan S; Zhou Q; Mseeh F; Grishin NV; Osterman AL; Zhang H
    Structure; 2003 Mar; 11(3):265-73. PubMed ID: 12623014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nucleotide-binding site of human sphingosine kinase 1.
    Pitson SM; Moretti PA; Zebol JR; Zareie R; Derian CK; Darrow AL; Qi J; D'Andrea RJ; Bagley CJ; Vadas MA; Wattenberg BW
    J Biol Chem; 2002 Dec; 277(51):49545-53. PubMed ID: 12393916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity.
    Li J; Sha B
    J Mol Biol; 2002 May; 318(4):1127-37. PubMed ID: 12054807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of critical residues of choline kinase A2 from Caenorhabditis elegans.
    Yuan C; Kent C
    J Biol Chem; 2004 Apr; 279(17):17801-9. PubMed ID: 14960577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli.
    Uhlin U; Cox GB; Guss JM
    Structure; 1997 Sep; 5(9):1219-30. PubMed ID: 9331422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.