These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 12966583)

  • 1. Synergistic cellulose hydrolysis can be described in terms of fractal-like kinetics.
    Väljamäe P; Kipper K; Pettersson G; Johansson G
    Biotechnol Bioeng; 2003 Oct; 84(2):254-7. PubMed ID: 12966583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as 'burst' kinetics on fluorescent polymeric model substrates.
    Kipper K; Väljamäe P; Johansson G
    Biochem J; 2005 Jan; 385(Pt 2):527-35. PubMed ID: 15362979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose hydrolysis by cellobiohydrolase Cel7A shows mixed hyperbolic product inhibition.
    Bezerra RM; Dias AA; Fraga I; Pereira AN
    Appl Biochem Biotechnol; 2011 Sep; 165(1):178-89. PubMed ID: 21499786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate.
    Gruno M; Väljamäe P; Pettersson G; Johansson G
    Biotechnol Bioeng; 2004 Jun; 86(5):503-11. PubMed ID: 15129433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolyses of alpha- and beta-cellobiosyl fluorides by Cel6A (cellobiohydrolase II) of Trichoderma reesei and Humicola insolens.
    Becker D; Johnson KS; Koivula A; Schülein M; Sinnott ML
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):315-9. PubMed ID: 10620509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes.
    Medve J; Karlsson J; Lee D; Tjerneld F
    Biotechnol Bioeng; 1998 Sep; 59(5):621-34. PubMed ID: 10099380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface.
    Igarashi K; Uchihashi T; Koivula A; Wada M; Kimura S; Okamoto T; Penttilä M; Ando T; Samejima M
    Science; 2011 Sep; 333(6047):1279-82. PubMed ID: 21885779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of the affinity of cellobiohydrolase I and its catalytic domain to cellulose in the presence of the reaction product--cellobiose.
    Herner ML; Melnick MS; Rabinovich ML
    Biochemistry (Mosc); 1999 Sep; 64(9):1012-20. PubMed ID: 10521718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of crystalline cellulose to cellulose III(I) results in efficient hydrolysis by cellobiohydrolase.
    Igarashi K; Wada M; Samejima M
    FEBS J; 2007 Apr; 274(7):1785-92. PubMed ID: 17319934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface density of cellobiohydrolase on crystalline celluloses. A critical parameter to evaluate enzymatic kinetics at a solid-liquid interface.
    Igarashi K; Wada M; Hori R; Samejima M
    FEBS J; 2006 Jul; 273(13):2869-78. PubMed ID: 16759230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface kinetics for cooperative fungal cellulase digestion of cellulose from quartz crystal microgravimetry.
    Maurer SA; Brady NW; Fajardo NP; Radke CJ
    J Colloid Interface Sci; 2013 Mar; 394():498-508. PubMed ID: 23347999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces.
    Szijártó N; Siika-Aho M; Tenkanen M; Alapuranen M; Vehmaanperä J; Réczey K; Viikari L
    J Biotechnol; 2008 Sep; 136(3-4):140-7. PubMed ID: 18635283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose hydrolysis and binding with Trichoderma reesei Cel5A and Cel7A and their core domains in ionic liquid solutions.
    Wahlström R; Rahikainen J; Kruus K; Suurnäkki A
    Biotechnol Bioeng; 2014 Apr; 111(4):726-33. PubMed ID: 24258388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose crystallinity--a key predictor of the enzymatic hydrolysis rate.
    Hall M; Bansal P; Lee JH; Realff MJ; Bommarius AS
    FEBS J; 2010 Mar; 277(6):1571-82. PubMed ID: 20148968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular-scale investigations of cellulose microstructure during enzymatic hydrolysis.
    Santa-Maria M; Jeoh T
    Biomacromolecules; 2010 Aug; 11(8):2000-7. PubMed ID: 20583829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous ethanol and cellobiose inhibition of cellulose hydrolysis studied with integrated equations assuming constant or variable substrate concentration.
    Bezerra RM; Dias AA; Fraga I; Pereira AN
    Appl Biochem Biotechnol; 2006 Jul; 134(1):27-38. PubMed ID: 16891664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive sorption kinetics of inhibited endo- and exoglucanases on a model cellulose substrate.
    Maurer SA; Bedbrook CN; Radke CJ
    Langmuir; 2012 Oct; 28(41):14598-608. PubMed ID: 22966968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities.
    Selig MJ; Knoshaug EP; Adney WS; Himmel ME; Decker SR
    Bioresour Technol; 2008 Jul; 99(11):4997-5005. PubMed ID: 18006303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (cel7A) and endoglucanase I (cel7B) of Trichoderma reesei.
    Eriksson T; Karlsson J; Tjerneld F
    Appl Biochem Biotechnol; 2002 Apr; 101(1):41-60. PubMed ID: 12008866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis.
    Jalak J; Väljamäe P
    Biotechnol Bioeng; 2010 Aug; 106(6):871-83. PubMed ID: 20506147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.