These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12966708)

  • 1. [Manifestations of dynamic coding of the amplitude-modulated sounds on the level of auditory nerve fibres].
    Rimskaia-Korsakova LK; Telepnev VN; Dubrovskiĭ NA
    Ross Fiziol Zh Im I M Sechenova; 2003 Jun; 89(6):700-14. PubMed ID: 12966708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic encoding of amplitude-modulated sounds at the level of auditory nerve fibers.
    Rimskaya-Korsakova LK; Telepnev VN; Dubrovksii NA
    Neurosci Behav Physiol; 2005 Jan; 35(1):71-81. PubMed ID: 15739790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cochlear nerve fiber responses to amplitude-modulated stimuli: variations with spontaneous rate and other response characteristics.
    Cooper NP; Robertson D; Yates GK
    J Neurophysiol; 1993 Jul; 70(1):370-86. PubMed ID: 8395584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency selectivity of single cochlear-nerve fibers based on the temporal response pattern to two-tone signals.
    Greenberg S; Geisler CD; Deng L
    J Acoust Soc Am; 1986 Apr; 79(4):1010-9. PubMed ID: 3700856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model.
    Carney LH; Yin TC
    J Neurophysiol; 1988 Nov; 60(5):1653-77. PubMed ID: 3199176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers.
    Neubauer H; Heil P
    Brain Res; 2008 Jul; 1220():208-23. PubMed ID: 17936252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous activity of auditory nerve fibers in the barn owl (Tyto alba): analyses of interspike interval distributions.
    Neubauer H; Köppl C; Heil P
    J Neurophysiol; 2009 Jun; 101(6):3169-91. PubMed ID: 19357334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus.
    Oertel D; Bal R; Gardner SM; Smith PH; Joris PX
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11773-9. PubMed ID: 11050208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors that influence rate-versus-intensity relations in single cochlear nerve fibers of the gerbil.
    Ohlemiller KK; Echteler SM; Siegel JH
    J Acoust Soc Am; 1991 Jul; 90(1):274-87. PubMed ID: 1652601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encoding of information into neural spike trains in an auditory nerve fiber model with electric stimuli in the presence of a pseudospontaneous activity.
    Mino H
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):360-9. PubMed ID: 17355047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal integration of sound pressure determines thresholds of auditory-nerve fibers.
    Heil P; Neubauer H
    J Neurosci; 2001 Sep; 21(18):7404-15. PubMed ID: 11549751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coding of spectral fine structure in the auditory nerve. I. Fourier analysis of period and interspike interval histograms.
    Horst JW; Javel E; Farley GR
    J Acoust Soc Am; 1986 Feb; 79(2):398-416. PubMed ID: 3950193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss.
    Heinz MG; Young ED
    J Neurophysiol; 2004 Feb; 91(2):784-95. PubMed ID: 14534289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the threshold of single-pulse electrical stimuli using a stochastic auditory nerve model: the effects of noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):825-35. PubMed ID: 12848350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal Coding of Single Auditory Nerve Fibers Is Not Degraded in Aging Gerbils.
    Heeringa AN; Zhang L; Ashida G; Beutelmann R; Steenken F; Köppl C
    J Neurosci; 2020 Jan; 40(2):343-354. PubMed ID: 31719164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Threshold tuning curves of chinchilla auditory nerve fibers. II. Dependence on spontaneous activity and relation to cochlear nonlinearity.
    Temchin AN; Rich NC; Ruggero MA
    J Neurophysiol; 2008 Nov; 100(5):2899-906. PubMed ID: 18753325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the rates of pseudo-spontaneous spikes generated by electric stimuli on information transmission in an auditory nerve fiber model.
    Kumsa P; Mino H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5246-9. PubMed ID: 24110919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic properties of primary auditory fibers compared with cells in the cochlear nucleus.
    Moller AR
    Acta Physiol Scand; 1976 Oct; 98(2):157-67. PubMed ID: 983725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nonlinear filter-bank model of the guinea-pig cochlear nerve: rate responses.
    Sumner CJ; O'Mard LP; Lopez-Poveda EA; Meddis R
    J Acoust Soc Am; 2003 Jun; 113(6):3264-74. PubMed ID: 12822799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Activities of single cochlear nerve fibers in rats].
    Zheng CM; Murata K; Ito S; Horikawa J; Minami S
    Sheng Li Xue Bao; 1989 Dec; 41(6):555-61. PubMed ID: 2626683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.