BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 12967198)

  • 1. Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes.
    Kim KA; Park JY; Lee JS; Lim S
    Arch Pharm Res; 2003 Aug; 26(8):631-7. PubMed ID: 12967198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation.
    Projean D; Baune B; Farinotti R; Flinois JP; Beaune P; Taburet AM; Ducharme J
    Drug Metab Dispos; 2003 Jun; 31(6):748-54. PubMed ID: 12756207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxychloroquine is Metabolized by Cytochrome P450 2D6, 3A4, and 2C8, and Inhibits Cytochrome P450 2D6, while its Metabolites also Inhibit Cytochrome P450 3A
    Paludetto MN; Kurkela M; Kahma H; Backman JT; Niemi M; Filppula AM
    Drug Metab Dispos; 2023 Mar; 51(3):293-305. PubMed ID: 36446607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphonate O-deethylation of [4-(4-bromo-2-cyano-phenylcarbamoyl) benzyl]-phosphonic acid diethyl ester, a lipoprotein lipase-promoting agent, catalyzed by cytochrome P450 2C8 and 3A4 in human liver microsomes.
    Morioka Y; Otsu M; Naito S; Imai T
    Drug Metab Dispos; 2002 Mar; 30(3):301-6. PubMed ID: 11854149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide.
    Bidstrup TB; Bjørnsdottir I; Sidelmann UG; Thomsen MS; Hansen KT
    Br J Clin Pharmacol; 2003 Sep; 56(3):305-14. PubMed ID: 12919179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Participation of CYP2C8 and CYP3A4 in the N-demethylation of imatinib in human hepatic microsomes.
    Nebot N; Crettol S; d'Esposito F; Tattam B; Hibbs DE; Murray M
    Br J Pharmacol; 2010 Nov; 161(5):1059-69. PubMed ID: 20977456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of rosiglitazone.
    Baldwin SJ; Clarke SE; Chenery RJ
    Br J Clin Pharmacol; 1999 Sep; 48(3):424-32. PubMed ID: 10510156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Halofantrine metabolism in microsomes in man: major role of CYP 3A4 and CYP 3A5.
    Baune B; Flinois JP; Furlan V; Gimenez F; Taburet AM; Becquemont L; Farinotti R
    J Pharm Pharmacol; 1999 Apr; 51(4):419-26. PubMed ID: 10385214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: effect of fibrates and rifampicin.
    Kajosaari LI; Laitila J; Neuvonen PJ; Backman JT
    Basic Clin Pharmacol Toxicol; 2005 Oct; 97(4):249-56. PubMed ID: 16176562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition and kinetics of cytochrome P4503A activity in microsomes from rat, human, and cdna-expressed human cytochrome P450.
    Ghosal A; Satoh H; Thomas PE; Bush E; Moore D
    Drug Metab Dispos; 1996 Sep; 24(9):940-7. PubMed ID: 8886602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of parathion in human liver: participation of CYP3A4 and its inactivation during microsomal parathion oxidation.
    Butler AM; Murray M
    J Pharmacol Exp Ther; 1997 Feb; 280(2):966-73. PubMed ID: 9023313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of troglitazone to a quinone-type metabolite catalyzed by cytochrome P-450 2C8 and P-450 3A4 in human liver microsomes.
    Yamazaki H; Shibata A; Suzuki M; Nakajima M; Shimada N; Guengerich FP; Yokoi T
    Drug Metab Dispos; 1999 Nov; 27(11):1260-6. PubMed ID: 10534310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of levo-alpha-Acetylmethadol (LAAM) by human liver cytochrome P450: involvement of CYP3A4 characterized by atypical kinetics with two binding sites.
    Oda Y; Kharasch ED
    J Pharmacol Exp Ther; 2001 Apr; 297(1):410-22. PubMed ID: 11259570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of CYP3A4 and CYP2C8 as the major cytochrome P450 s responsible for morphine N-demethylation in human liver microsomes.
    Projean D; Morin PE; Tu TM; Ducharme J
    Xenobiotica; 2003 Aug; 33(8):841-54. PubMed ID: 12936704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of cytochrome P450 forms involved in the 4-hydroxylation of valsartan, a potent and specific angiotensin II receptor antagonist, in human liver microsomes.
    Nakashima A; Kawashita H; Masuda N; Saxer C; Niina M; Nagae Y; Iwasaki K
    Xenobiotica; 2005 Jun; 35(6):589-602. PubMed ID: 16192110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of cytochromes P450 2C9 and 3A4 as the major catalysts of phenprocoumon hydroxylation in vitro.
    Ufer M; Svensson JO; Krausz KW; Gelboin HV; Rane A; Tybring G
    Eur J Clin Pharmacol; 2004 May; 60(3):173-82. PubMed ID: 15054565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of 7-benzyloxy-4-trifluoromethyl-coumarin by human hepatic cytochrome P450 isoforms.
    Renwick AB; Surry D; Price RJ; Lake BG; Evans DC
    Xenobiotica; 2000 Oct; 30(10):955-69. PubMed ID: 11315104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro metabolism of the calmodulin antagonist DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate) by human liver microsomes: involvement of cytochromes p450 in atypical kinetics and potential drug interactions.
    Tachibana S; Fujimaki Y; Yokoyama H; Okazaki O; Sudo K
    Drug Metab Dispos; 2005 Nov; 33(11):1628-36. PubMed ID: 16049129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of cytochrome P450 isoforms involved in the metabolism of loperamide in human liver microsomes.
    Kim KA; Chung J; Jung DH; Park JY
    Eur J Clin Pharmacol; 2004 Oct; 60(8):575-81. PubMed ID: 15365656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of human cytochrome P450 isoforms involved in the metabolism of S-2-[4-(3-methyl-2-thienyl)phenyl]propionic acid.
    Taguchi K; Konishi T; Nishikawa H; Kitamura S
    Xenobiotica; 1999 Sep; 29(9):899-907. PubMed ID: 10548450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.