These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12968332)

  • 41. In vivo insulin regulation of skeletal muscle glycogen synthase in calorie-restricted and in ad libitum-fed rhesus monkeys.
    Ortmeyer HK
    J Nutr; 2001 Mar; 131(3):907S-912S. PubMed ID: 11238784
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biocatalytic functionalization of hydroxyalkyl acrylates and phenoxyethanol via phosphorylation.
    Tasnádi G; Hall M; Baldenius K; Ditrich K; Faber K
    J Biotechnol; 2016 Sep; 233():219-27. PubMed ID: 27422352
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of nonspecific acid phosphatase in Salmonella: phoN and phoP genes.
    Kier LD; Weppelman RM; Ames BN
    J Bacteriol; 1979 Apr; 138(1):155-61. PubMed ID: 374361
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibition of the glucose-6-phosphatase system by N-bromoacetylethanolamine phosphate, a potential affinity label for auxiliary proteins.
    Foster JD; Pederson BA; Nordlie RC
    Biochim Biophys Acta; 1996 Oct; 1297(2):244-54. PubMed ID: 8917628
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Producing glucose 6-phosphate from cellulosic biomass: structural insights into levoglucosan bioconversion.
    Bacik JP; Klesmith JR; Whitehead TA; Jarboe LR; Unkefer CJ; Mark BL; Michalczyk R
    J Biol Chem; 2015 Oct; 290(44):26638-48. PubMed ID: 26354439
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A protein phosphorylation switch at the conserved allosteric site in GP.
    Lin K; Rath VL; Dai SC; Fletterick RJ; Hwang PK
    Science; 1996 Sep; 273(5281):1539-42. PubMed ID: 8703213
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation.
    Moonira T; Chachra SS; Ford BE; Marin S; Alshawi A; Adam-Primus NS; Arden C; Al-Oanzi ZH; Foretz M; Viollet B; Cascante M; Agius L
    J Biol Chem; 2020 Mar; 295(10):3330-3346. PubMed ID: 31974165
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of Phosphate-Containing Compounds as New Inhibitors of 14-3-3/c-Abl Protein-Protein Interaction.
    Iralde-Lorente L; Tassone G; Clementi L; Franci L; Munier CC; Cau Y; Mori M; Chiariello M; Angelucci A; Perry MWD; Pozzi C; Mangani S; Botta M
    ACS Chem Biol; 2020 Apr; 15(4):1026-1035. PubMed ID: 32142251
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simple enzymatic in situ generation of dihydroxyacetone phosphate and its use in a cascade reaction for the production of carbohydrates: increased efficiency by phosphate cycling.
    van Herk T; Hartog AF; Schoemaker HE; Wever R
    J Org Chem; 2006 Aug; 71(16):6244-7. PubMed ID: 16872211
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Species-specific inhibition of inosine 5'-monophosphate dehydrogenase by mycophenolic acid.
    Digits JA; Hedstrom L
    Biochemistry; 1999 Nov; 38(46):15388-97. PubMed ID: 10563825
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The 35 kDa acid metallophosphatase of the frog Rana esculenta liver: studies on its cellular localization and protein phosphatase activity.
    Szalewicz A; Strzelczyk B; Sopel M; Kubicz A
    Acta Biochim Pol; 2003; 50(2):555-66. PubMed ID: 12833181
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Pathways of inosine monophosphate transformation in the chicken liver].
    Kokunin VA; Kotsiuruba AV
    Biokhimiia; 1988 Feb; 53(2):182-7. PubMed ID: 3370246
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adenosine enhances cytosolic phosphorylation potential and ventricular contractility in stunned guinea pig heart: receptor-mediated and metabolic protection.
    Schulze K; Duschek C; Lasley RD; Bünger R
    J Appl Physiol (1985); 2007 Mar; 102(3):1202-13. PubMed ID: 17341737
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression of the virulence plasmid-carried apyrase gene (apy) of enteroinvasive Escherichia coli and Shigella flexneri is under the control of H-NS and the VirF and VirB regulatory cascade.
    Berlutti F; Casalino M; Zagaglia C; Fradiani PA; Visca P; Nicoletti M
    Infect Immun; 1998 Oct; 66(10):4957-64. PubMed ID: 9746603
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hypoxanthine-guanine exchange by intact human erythrocytes.
    Salerno C; Giacomello A
    Biochemistry; 1985 Mar; 24(6):1306-9. PubMed ID: 3986179
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The catalytic center of glucose-6-phosphatase. HIS176 is the nucleophile forming the phosphohistidine-enzyme intermediate during catalysis.
    Ghosh A; Shieh JJ; Pan CJ; Sun MS; Chou JY
    J Biol Chem; 2002 Sep; 277(36):32837-42. PubMed ID: 12093795
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetic characterization of inosine monophosphate dehydrogenase of Leishmania donovani.
    Dobie F; Berg A; Boitz JM; Jardim A
    Mol Biochem Parasitol; 2007 Mar; 152(1):11-21. PubMed ID: 17173987
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Probing the mechanism of inosine monophosphate dehydrogenase with kinetic isotope effects and NMR determination of the hydride transfer stereospecificity.
    Xiang B; Markham GD
    Arch Biochem Biophys; 1997 Dec; 348(2):378-82. PubMed ID: 9434751
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic characterization of rabbit skeletal muscle phosphorylase ab hybrid.
    Vereb G; Fodor A; Bot G
    Biochim Biophys Acta; 1987 Sep; 915(1):19-27. PubMed ID: 3113485
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Catalytic cycling in beta-phosphoglucomutase: a kinetic and structural analysis.
    Zhang G; Dai J; Wang L; Dunaway-Mariano D; Tremblay LW; Allen KN
    Biochemistry; 2005 Jul; 44(27):9404-16. PubMed ID: 15996095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.