BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12968334)

  • 1. Selenenyl iodide: a new substrate for mammalian thioredoxin reductase.
    Mugesh G; Klotz LO; du Mont WW; Becker K; Sies H
    Org Biomol Chem; 2003 Aug; 1(16):2848-52. PubMed ID: 12968334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic studies on iodothyronine deiodinase intermediates: modeling the reduction of selenenyl iodide by thiols.
    Mugesh G; du Mont WW; Wismach C; Jones PG
    Chembiochem; 2002 May; 3(5):440-7. PubMed ID: 12007178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of the 5'-deiodination of thyroxine by iodothyronine deiodinase: chemical corroboration of a selenenyl iodide intermediate.
    Goto K; Sonoda D; Shimada K; Sase S; Kawashima T
    Angew Chem Int Ed Engl; 2010; 49(3):545-7. PubMed ID: 19998295
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolism of selenium compounds catalyzed by the mammalian selenoprotein thioredoxin reductase.
    Lu J; Berndt C; Holmgren A
    Biochim Biophys Acta; 2009 Nov; 1790(11):1513-9. PubMed ID: 19406206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selenocysteine in mammalian thioredoxin reductase and application of ebselen as a therapeutic.
    Ren X; Zou L; Lu J; Holmgren A
    Free Radic Biol Med; 2018 Nov; 127():238-247. PubMed ID: 29807162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ebselen: a substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thioredoxin oxidant.
    Zhao R; Masayasu H; Holmgren A
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8579-84. PubMed ID: 12070343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity.
    Lee SR; Bar-Noy S; Kwon J; Levine RL; Stadtman TC; Rhee SG
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2521-6. PubMed ID: 10688911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity assays of mammalian thioredoxin and thioredoxin reductase: fluorescent disulfide substrates, mechanisms, and use with tissue samples.
    Montano SJ; Lu J; Gustafsson TN; Holmgren A
    Anal Biochem; 2014 Mar; 449():139-46. PubMed ID: 24374250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of a Stable Primary-Alkyl-Substituted Selenenyl Iodide and Its Hydrolytic Conversion to the Corresponding Selenenic Acid.
    Sase S; Kakimoto R; Kimura R; Goto K
    Molecules; 2015 Dec; 20(12):21415-20. PubMed ID: 26633336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thyroxine binding to type III iodothyronine deiodinase.
    Bayse CA; Marsan ES; Garcia JR; Tran-Thompson AT
    Sci Rep; 2020 Sep; 10(1):15401. PubMed ID: 32958818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Thioredoxin reductase--a new target for molecular medical investigations].
    Zagrodzki P
    Postepy Hig Med Dosw; 2002; 56(2):155-67. PubMed ID: 12107960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-protein interactions at an enzyme-substrate interface: characterization of transient reaction intermediates throughout a full catalytic cycle of Escherichia coli thioredoxin reductase.
    Negri A; Rodríguez-Larrea D; Marco E; Jiménez-Ruiz A; Sánchez-Ruiz JM; Gago F
    Proteins; 2010 Jan; 78(1):36-51. PubMed ID: 19585660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of mammalian selenocysteine-dependent iodothyronine deiodinase suggests a peroxiredoxin-like catalytic mechanism.
    Schweizer U; Schlicker C; Braun D; Köhrle J; Steegborn C
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):10526-31. PubMed ID: 25002520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic studies on selenoenzymes: modeling the role of proximal histidines in thioredoxin reductases.
    Sarma BK; Mugesh G
    Inorg Chem; 2006 Jul; 45(14):5307-14. PubMed ID: 16813393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thioredoxin Cross-Linking by Nitrogen Mustard in Lung Epithelial Cells: Formation of Multimeric Thioredoxin/Thioredoxin Reductase Complexes and Inhibition of Disulfide Reduction.
    Jan YH; Heck DE; Casillas RP; Laskin DL; Laskin JD
    Chem Res Toxicol; 2015 Nov; 28(11):2091-103. PubMed ID: 26451472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thioredoxin antioxidant system.
    Lu J; Holmgren A
    Free Radic Biol Med; 2014 Jan; 66():75-87. PubMed ID: 23899494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol cofactors for selenoenzymes and their synthetic mimics.
    Sarma BK; Mugesh G
    Org Biomol Chem; 2008 Mar; 6(6):965-74. PubMed ID: 18327317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations.
    Zhong L; Holmgren A
    J Biol Chem; 2000 Jun; 275(24):18121-8. PubMed ID: 10849437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system.
    Nordberg J; Arnér ES
    Free Radic Biol Med; 2001 Dec; 31(11):1287-312. PubMed ID: 11728801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The selenium analog of 6-propylthiouracil. Measurement of its inhibitory effect on type I iodothyronine deiodinase and of its antithyroid activity.
    Taurog A; Dorris ML; Hu WX; Guziec FS
    Biochem Pharmacol; 1995 Mar; 49(5):701-9. PubMed ID: 7887985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.