These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 12968881)

  • 1. Synthesis of various 3-substituted 1,2,4-oxadiazole-containing chiral beta 3- and alpha-amino acids from Fmoc-protected aspartic acid.
    Hamzé A; Hernandez JF; Fulcrand P; Martinez J
    J Org Chem; 2003 Sep; 68(19):7316-21. PubMed ID: 12968881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient synthesis of enantiomerically pure beta2-amino acids via chiral isoxazolidinones.
    Lee HS; Park JS; Kim BM; Gellman SH
    J Org Chem; 2003 Feb; 68(4):1575-8. PubMed ID: 12585907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The aspartimide problem in Fmoc-based SPPS. Part III.
    Mergler M; Dick F
    J Pept Sci; 2005 Oct; 11(10):650-7. PubMed ID: 15849777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aspartimide problem in Fmoc-based SPPS. Part I.
    Mergler M; Dick F; Sax B; Weiler P; Vorherr T
    J Pept Sci; 2003 Jan; 9(1):36-46. PubMed ID: 12587881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convenient synthesis of N-methylamino acids compatible with Fmoc solid-phase peptide synthesis.
    Biron E; Kessler H
    J Org Chem; 2005 Jun; 70(13):5183-9. PubMed ID: 15960522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Problem of aspartimide formation in Fmoc-based solid-phase peptide synthesis using Dmab group to protect side chain of aspartic acid.
    Ruczyński J; Lewandowska B; Mucha P; Rekowski P
    J Pept Sci; 2008 Mar; 14(3):335-41. PubMed ID: 17975850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial design of simplified high-performance chiral phase-transfer catalysts for practical asymmetric synthesis of alpha-alkyl- and alpha,alpha-dialkyl-alpha-amino acids.
    Kitamura M; Shirakawa S; Arimura Y; Wang X; Maruoka K
    Chem Asian J; 2008 Sep; 3(8-9):1702-14. PubMed ID: 18683160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of in situ silylation for improved, convenient preparation of fluorenylmethoxycarbonyl (Fmoc)-protected phosphinate amino acids.
    Li S; Whitehead JK; Hammer RP
    J Org Chem; 2007 Apr; 72(8):3116-8. PubMed ID: 17375960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of thiourea-tethered C-glycosyl amino acids via isothiocyanate-amine coupling.
    Barghash RF; Massi A; Dondoni A
    Org Biomol Chem; 2009 Aug; 7(16):3319-30. PubMed ID: 19641791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of protected peptidyl thioester intermediates for native chemical ligation by Nalpha-9-fluorenylmethoxycarbonyl (Fmoc) chemistry: considerations of side-chain and backbone anchoring strategies, and compatible protection for N-terminal cysteine.
    Gross CM; Lelièvre D; Woodward CK; Barany G
    J Pept Res; 2005 Mar; 65(3):395-410. PubMed ID: 15787970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New t-butyl based aspartate protecting groups preventing aspartimide formation in Fmoc SPPS.
    Behrendt R; Huber S; Martí R; White P
    J Pept Sci; 2015 Aug; 21(8):680-7. PubMed ID: 26077723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation, isolation, and characterization of Nalpha-Fmoc-peptide isocyanates: solution synthesis of oligo-alpha-peptidyl ureas.
    Sureshbabu VV; Patil BS; Venkataramanarao R
    J Org Chem; 2006 Sep; 71(20):7697-705. PubMed ID: 16995676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-alkoxycarbonyl-glutamic and aspartic acids. Studies on the activation and cyclodehydration and side-reaction encountered in analysis of glutamic acid using Fmoc-chloride.
    Chen FM; Benoiton NL
    Int J Pept Protein Res; 1992 Jul; 40(1):13-8. PubMed ID: 1358849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral N-Fmoc-beta-amino alkyl isonitriles derived from amino acids: first synthesis and application in 1-substituted tetrazole synthesis.
    Sureshbabu VV; Narendra N; Nagendra G
    J Org Chem; 2009 Jan; 74(1):153-7. PubMed ID: 19055382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of an amino acid analogue to incorporate p-aminobenzyl-EDTA in peptides.
    Song AI; Rana TM
    Bioconjug Chem; 1997; 8(2):249-52. PubMed ID: 9095368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Side-chain anchoring strategy for solid-phase synthesis of peptide acids with C-terminal cysteine.
    Barany G; Han Y; Hargittai B; Liu RQ; Varkey JT
    Biopolymers; 2003; 71(6):652-66. PubMed ID: 14991675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient, convenient solid-phase synthesis of amino acid-modified peptide nucleic acid monomers and oligomers.
    Balaji BS; Gallazzi F; Jia F; Lewis MR
    Bioconjug Chem; 2006; 17(2):551-8. PubMed ID: 16536490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid-azetidine chimeras: synthesis of enantiopure 3-substituted azetidine-2-carboxylic acids.
    Sajjadi Z; Lubell WD
    J Pept Res; 2005 Feb; 65(2):298-310. PubMed ID: 15705172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multistage, one-pot procedure mediated by a single catalyst: a new approach to the catalytic asymmetric synthesis of beta-amino acids.
    Hafez AM; Dudding T; Wagerle TR; Shah MH; Taggi AE; Lectka T
    J Org Chem; 2003 Jul; 68(15):5819-25. PubMed ID: 12868913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-supported synthesis of cryptand-like macrobicyclic peptides.
    Virta P; Lönnberg H
    J Org Chem; 2003 Oct; 68(22):8534-8. PubMed ID: 14575482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.