These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 12969029)
1. A contribution to the functional morphology of the femoral chordotonal organ in the green lacewing Chrysoperla carnea (Neuroptera). Lipovsek S; Devetak D; Strus J; Pabst MA Anat Histol Embryol; 2003 Oct; 32(5):291-6. PubMed ID: 12969029 [TBL] [Abstract][Full Text] [Related]
2. Femoral chordotonal organ in the legs of an insect,Chrysoperla carnea(Neuroptera). Lipovsek S; Pabst MA; Devetak D Tissue Cell; 1999 May; 31(2):154-62. PubMed ID: 18627854 [TBL] [Abstract][Full Text] [Related]
3. Immunohistochemical localization of serotonin and choline acetyltransferase in sensory neurones of the locust. Lutz EM; Tyrer NM J Comp Neurol; 1988 Jan; 267(3):335-42. PubMed ID: 3278018 [TBL] [Abstract][Full Text] [Related]
4. Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: I. femoral chordotonal organ. Nishino H J Comp Neurol; 2003 Sep; 464(3):312-26. PubMed ID: 12900926 [TBL] [Abstract][Full Text] [Related]
5. THE PHYSIOLOGY OF SENSORY CELLS IN THE VENTRAL SCOLOPARIUM OF THE STICK INSECT FEMORAL CHORDOTONAL ORGAN. BUSchges A J Exp Biol; 1994 Apr; 189(1):285-92. PubMed ID: 9317814 [TBL] [Abstract][Full Text] [Related]
6. Activity-dependent sensitivity of proprioceptive sensory neurons in the stick insect femoral chordotonal organ. DiCaprio RA; Wolf H; Büschges A J Neurophysiol; 2002 Nov; 88(5):2387-98. PubMed ID: 12424280 [TBL] [Abstract][Full Text] [Related]
7. Chordotonal organs in hemipteran insects: unique peripheral structures but conserved central organization revealed by comparative neuroanatomy. Nishino H; Mukai H; Takanashi T Cell Tissue Res; 2016 Dec; 366(3):549-572. PubMed ID: 27586586 [TBL] [Abstract][Full Text] [Related]
8. Topographic mapping of the axons of the femoral chordotonal organ neurons in the cricket Gryllus bimaculatus. Nishino H Cell Tissue Res; 2000 Jan; 299(1):145-57. PubMed ID: 10654077 [TBL] [Abstract][Full Text] [Related]
9. Structure of the subgenual organ in the green lacewing, Chrysoperla carnea. Devetak D; Pabst MA Tissue Cell; 1994 Apr; 26(2):249-57. PubMed ID: 18621270 [TBL] [Abstract][Full Text] [Related]
10. Remodeling of the femoral chordotonal organ during metamorphosis of the hawkmoth, Manduca sexta. Consoulas C; Rose U; Levine RB J Comp Neurol; 2000 Oct; 426(3):391-405. PubMed ID: 10992245 [TBL] [Abstract][Full Text] [Related]
11. Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. Hess D; Büschges A J Neurophysiol; 1999 Apr; 81(4):1856-65. PubMed ID: 10200220 [TBL] [Abstract][Full Text] [Related]
12. Role of presynaptic inputs to proprioceptive afferents in tuning sensorimotor pathways of an insect joint control network. Sauer AE; Büschges A; Stein W J Neurobiol; 1997 Apr; 32(4):359-76. PubMed ID: 9087889 [TBL] [Abstract][Full Text] [Related]
13. The genome sequence of the common green lacewing, Crowley LM; ; ; ; ; ; Wellcome Open Res; 2021; 6():334. PubMed ID: 37089663 [TBL] [Abstract][Full Text] [Related]
14. Immunohistochemical localization of choline acetyltransferase in the central nervous system of the locust. Lutz EM; Tyrer NM Brain Res; 1987 Mar; 407(1):173-9. PubMed ID: 3555698 [TBL] [Abstract][Full Text] [Related]
15. Immunoreactivity against choline acetyltransferase, gamma-aminobutyric acid, histamine, octopamine, and serotonin in the larval chemosensory system of Dosophila melanogaster. Python F; Stocker RF J Comp Neurol; 2002 Nov; 453(2):157-67. PubMed ID: 12373781 [TBL] [Abstract][Full Text] [Related]
16. Subsets of leg proprioceptors influence leg kinematics but not interleg coordination in Drosophila melanogaster walking. Chockley AS; Dinges GF; Di Cristina G; Ratican S; Bockemühl T; Büschges A J Exp Biol; 2022 Oct; 225(20):. PubMed ID: 36268799 [TBL] [Abstract][Full Text] [Related]
17. Comparing effects of insecticides on two green lacewings species, Chrysoperla johnsoni and Chrysoperla carnea (Neuroptera: Chrysopidae). Amarasekare KG; Shearer PW J Econ Entomol; 2013 Jun; 106(3):1126-33. PubMed ID: 23865176 [TBL] [Abstract][Full Text] [Related]
18. Life history comparison of two green lacewing species Chrysoperla johnsoni and Chrysoperla carnea (Neuroptera: Chrysopidae). Amarasekare KG; Shearer PW Environ Entomol; 2013 Oct; 42(5):1079-84. PubMed ID: 24331618 [TBL] [Abstract][Full Text] [Related]
19. A new East-Asian species in the Chrysoperla carnea-group of cryptic lacewing species (Neuroptera: Chrysopidae) based on distinct larval morphology and a unique courtship song. Henry CS; Brooks SJ; Johnson JB; Haruyama N; Duelli P; Mochizuki A Zootaxa; 2015 Feb; 3918(2):194-208. PubMed ID: 25781088 [TBL] [Abstract][Full Text] [Related]
20. Host Plant-Herbivore-Predator Interactions in Chrysoperla carnea (Neuroptera: Chrysopidae) and Myzus persicae (Homoptera: Aphididae) on Four Plant Species Under Laboratory Conditions. Farrokhi M; Gharekhani G; Iranipour S; Hassanpour M J Econ Entomol; 2017 Dec; 110(6):2342-2350. PubMed ID: 29121244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]