BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 12970197)

  • 1. A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3(2).
    Brekasis D; Paget MS
    EMBO J; 2003 Sep; 22(18):4856-65. PubMed ID: 12970197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray structure of a Rex-family repressor/NADH complex insights into the mechanism of redox sensing.
    Sickmier EA; Brekasis D; Paranawithana S; Bonanno JB; Paget MS; Burley SK; Kielkopf CL
    Structure; 2005 Jan; 13(1):43-54. PubMed ID: 15642260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cloning and expression of the redox-sensing transcriptional repressor Rex and in vitro DNA-binding assay of the Rex and rex operator in Streptomyces rimosus M4018].
    Shen J; Tang Z; Xiao C; Guo M
    Wei Sheng Wu Xue Bao; 2012 Jan; 52(1):38-43. PubMed ID: 22489458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for NADH/NAD+ redox sensing by a Rex family repressor.
    McLaughlin KJ; Strain-Damerell CM; Xie K; Brekasis D; Soares AS; Paget MS; Kielkopf CL
    Mol Cell; 2010 May; 38(4):563-75. PubMed ID: 20513431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex.
    Wang E; Bauer MC; Rogstam A; Linse S; Logan DT; von Wachenfeldt C
    Mol Microbiol; 2008 Jul; 69(2):466-78. PubMed ID: 18485070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory loop between redox sensing of the NADH/NAD(+) ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis.
    Gyan S; Shiohira Y; Sato I; Takeuchi M; Sato T
    J Bacteriol; 2006 Oct; 188(20):7062-71. PubMed ID: 17015645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational insights into the binding modes of Sr-Rex with cofactor NADH/NAD+ and operator DNA.
    Chu Y; Li W; Wang J; Liu G; Tang Y
    J Mol Model; 2013 Aug; 19(8):3143-51. PubMed ID: 23615679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus.
    Pagels M; Fuchs S; Pané-Farré J; Kohler C; Menschner L; Hecker M; McNamarra PJ; Bauer MC; von Wachenfeldt C; Liebeke M; Lalk M; Sander G; von Eiff C; Proctor RA; Engelmann S
    Mol Microbiol; 2010 Jun; 76(5):1142-61. PubMed ID: 20374494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-sensing regulator Rex regulates aerobic metabolism, morphological differentiation, and avermectin production in Streptomyces avermitilis.
    Liu X; Cheng Y; Lyu M; Wen Y; Song Y; Chen Z; Li J
    Sci Rep; 2017 Mar; 7():44567. PubMed ID: 28303934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Basis of Redox-Sensing Transcriptional Repressor Rex with Cofactor NAD
    Jeong KH; Lee HJ; Park YW; Lee JY
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-angle X-ray scattering study of a Rex family repressor: conformational response to NADH and NAD+ binding in solution.
    Wang E; Ikonen TP; Knaapila M; Svergun D; Logan DT; von Wachenfeldt C
    J Mol Biol; 2011 May; 408(4):670-83. PubMed ID: 21402078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Streptomyces NrdR transcriptional regulator is a Zn ribbon/ATP cone protein that binds to the promoter regions of class Ia and class II ribonucleotide reductase operons.
    Grinberg I; Shteinberg T; Gorovitz B; Aharonowitz Y; Cohen G; Borovok I
    J Bacteriol; 2006 Nov; 188(21):7635-44. PubMed ID: 16950922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding mode of the oxidized α-anomer of NAD+ to RSP, a Rex-family repressor.
    Zheng Y; Ko TP; Yang Y; Shao W; Guo RT
    Biochem Biophys Res Commun; 2015 Jan; 456(3):733-6. PubMed ID: 25527330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct structural features of Rex-family repressors to sense redox levels in anaerobes and aerobes.
    Zheng Y; Ko TP; Sun H; Huang CH; Pei J; Qiu R; Wang AH; Wiegel J; Shao W; Guo RT
    J Struct Biol; 2014 Dec; 188(3):195-204. PubMed ID: 25463021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen, metabolism, and gene expression: the T-Rex connection.
    Wood MJ; Storz G
    Structure; 2005 Jan; 13(1):2-4. PubMed ID: 15642255
    [No Abstract]   [Full Text] [Related]  

  • 16. NAD+ pool depletion as a signal for the Rex regulon involved in Streptococcus agalactiae virulence.
    Franza T; Rogstam A; Thiyagarajan S; Sullivan MJ; Derré-Bobillot A; Bauer MC; Goh KGK; Da Cunha V; Glaser P; Logan DT; Ulett GC; von Wachenfeldt C; Gaudu P
    PLoS Pathog; 2021 Aug; 17(8):e1009791. PubMed ID: 34370789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulation of central carbon and energy metabolism in bacteria by redox-responsive repressor Rex.
    Ravcheev DA; Li X; Latif H; Zengler K; Leyn SA; Korostelev YD; Kazakov AE; Novichkov PS; Osterman AL; Rodionov DA
    J Bacteriol; 2012 Mar; 194(5):1145-57. PubMed ID: 22210771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genetic redox sensor for mammalian cells.
    Weber W; Link N; Fussenegger M
    Metab Eng; 2006 May; 8(3):273-80. PubMed ID: 16473537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Analysis of Redox-sensing Transcriptional Repressor Rex from Thermotoga maritima.
    Park YW; Jang YY; Joo HK; Lee JY
    Sci Rep; 2018 Sep; 8(1):13244. PubMed ID: 30185822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NAD+-dependent DNA ligases of Mycobacterium tuberculosis and Streptomyces coelicolor.
    Wilkinson A; Sayer H; Bullard D; Smith A; Day J; Kieser T; Bowater R
    Proteins; 2003 May; 51(3):321-6. PubMed ID: 12696044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.