BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 12970471)

  • 1. Experimental approach to elucidating the mechanism of light-independent chlorophyll biosynthesis in greening barley.
    Raskin VI; Schwartz A
    Plant Physiol; 2003 Sep; 133(1):25-8. PubMed ID: 12970471
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization of two phases of chlorophyll formation during greening of etiolated barley leaves.
    Domanskii V; Rassadina V; Gus-Mayer S; Wanner G; Schoch S; Rüdiger W
    Planta; 2003 Jan; 216(3):475-83. PubMed ID: 12520340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photodynamic action of uroporphyrin and protochlorophyllide in greening barley leaves treated with cesium chloride.
    Shalygo NV; Mock HP; Averina NG; Grimm B
    J Photochem Photobiol B; 1998 Feb; 42(2):151-8. PubMed ID: 9540221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Both light-dependent protochlorophyllide oxidoreductase A and protochlorophyllide oxidoreductase B are down-regulated in the slender mutant of barley.
    Ougham HJ; Thomas AM; Thomas BJ; Frick GA; Armstrong GA
    J Exp Bot; 2001 Jul; 52(360):1447-54. PubMed ID: 11457904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of chlorophyll synthesis pathway alteration in desiccated barley leaves.
    Le Lay P; Eullaffroy P; Juneau P; Popovic R
    Plant Cell Physiol; 2000 May; 41(5):565-70. PubMed ID: 10929939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of the photoactive protochlorophyllide-protein complex in the light during the greening of barley.
    Franck F; Strzalka K
    FEBS Lett; 1992 Aug; 309(1):73-7. PubMed ID: 1511748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves.
    Richter A; Peter E; Pörs Y; Lorenzen S; Grimm B; Czarnecki O
    Plant Cell Physiol; 2010 May; 51(5):670-81. PubMed ID: 20375109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.).
    Holtorf H; Reinbothe S; Reinbothe C; Bereza B; Apel K
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3254-8. PubMed ID: 7724548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The association of protein synthesis with protochlorophyllide holochrome regeneration in dark-grown barley leaves.
    Alscher RG; Hawkes SP; Sauer K
    Biochem Biophys Res Commun; 1976 Nov; 73(2):240-7. PubMed ID: 999709
    [No Abstract]   [Full Text] [Related]  

  • 10. Salicylic acid decreases the levels of dehydrin-like proteins in Tibetan hulless barley leaves under water stress.
    Sun X; Yuan S; Lin HH
    Z Naturforsch C J Biosci; 2006; 61(3-4):245-50. PubMed ID: 16729584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root-shoot interaction in the greening of wheat seedlings grown under red light.
    Tripathy BC; Brown CS
    Plant Physiol; 1995 Feb; 107(2):407-11. PubMed ID: 11536685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of the preferred routes of C8-vinyl reduction in chlorophyll and bacteriochlorophyll biosynthesis.
    Canniffe DP; Chidgey JW; Hunter CN
    Biochem J; 2014 Sep; 462(3):433-40. PubMed ID: 24942864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a light-independent protochlorophyllide reductase in green barley leaves.
    Adamson H
    Prog Clin Biol Res; 1982; 102 Pt B():33-41. PubMed ID: 7163175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana.
    Armstrong GA; Runge S; Frick G; Sperling U; Apel K
    Plant Physiol; 1995 Aug; 108(4):1505-17. PubMed ID: 7659751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bleaching herbicide effects on plastids of dark-grown plants: lipid composition of etioplasts in amitrole and norflurazon-treated barley leaves.
    Di Baccio D; Quartacci MF; Vecchia FD; La Rocca N; Rascio N; Navari-Izzo F
    J Exp Bot; 2002 Sep; 53(376):1857-65. PubMed ID: 12177123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic product formation impairs both the chloroplast receptor-binding function as well as translocation competence of the NADPH: protochlorophyllide oxidoreductase, a nuclear-encoded plastid precursor protein.
    Reinbothe S; Reinbothe C; Runge S; Apel K
    J Cell Biol; 1995 Apr; 129(2):299-308. PubMed ID: 7721935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions.
    Sakuraba Y; Rahman ML; Cho SH; Kim YS; Koh HJ; Yoo SC; Paek NC
    Plant J; 2013 Apr; 74(1):122-33. PubMed ID: 23289852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Light-induced reduction of protochlorophyllide in angiosperms and chloroplast development].
    Myśliwa-Kurdziel B; Strzałka K
    Postepy Biochem; 2010; 56(4):418-26. PubMed ID: 21473046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of chlorophyll from protochlorophyll(ide) in green plant leaves.
    Ignatov NV; Litvin FF
    Biochemistry (Mosc); 2002 Aug; 67(8):949-55. PubMed ID: 12223097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane system organization in the process of greening of clinorotated barley seedlings.
    Adamchuk-Chala NI; Syvash OO; Povkhan MF; Dovbysh KP
    J Gravit Physiol; 2007 Jul; 14(1):P113-4. PubMed ID: 18372725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.