BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12970501)

  • 1. Dehydroascorbate uptake activity correlates with cell growth and cell division of tobacco bright yellow-2 cell cultures.
    Horemans N; Potters G; De Wilde L; Caubergs RJ
    Plant Physiol; 2003 Sep; 133(1):361-7. PubMed ID: 12970501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carrier mediated uptake of dehydroascorbate into higher plant plasma membrane vesicles shows trans-stimulation.
    Horemans N; Asard H; Caubergs RJ
    FEBS Lett; 1998 Jan; 421(1):41-4. PubMed ID: 9462836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism.
    Potters G; Horemans N; Bellone S; Caubergs RJ; Trost P; Guisez Y; Asard H
    Plant Physiol; 2004 Apr; 134(4):1479-87. PubMed ID: 15047900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two distinct uptake mechanisms for ascorbate and dehydroascorbate in human lymphoblasts and their interaction with glucose.
    Ngkeekwong FC; Ng LL
    Biochem J; 1997 May; 324 ( Pt 1)(Pt 1):225-30. PubMed ID: 9164860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Moderately controlled transport of ascorbate into aortic endothelial cells against slowdown of the cell cycle, decreasing of the concentration or increasing of coexistent glucose as compared with dehydroascorbate.
    Saitoh Y; Nagao N; O'Uchida R; Yamane T; Kageyama K; Muto N; Miwa N
    Mol Cell Biochem; 1997 Aug; 173(1-2):43-50. PubMed ID: 9278253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dehydroascorbate transport in human chondrocytes is regulated by hypoxia and is a physiologically relevant source of ascorbic acid in the joint.
    McNulty AL; Stabler TV; Vail TP; McDaniel GE; Kraus VB
    Arthritis Rheum; 2005 Sep; 52(9):2676-85. PubMed ID: 16142743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dehydroascorbate and glucose are taken up into Arabidopsis thaliana cell cultures by two distinct mechanisms.
    Horemans N; Szarka A; De Bock M; Raeymaekers T; Potters G; Levine M; Banhégyi G; Guisez Y
    FEBS Lett; 2008 Aug; 582(18):2714-8. PubMed ID: 18619442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transport of vitamin C in the isolated human near-term placenta.
    Rybakowski C; Mohar B; Wohlers S; Leichtweiss HP; Schröder H
    Eur J Obstet Gynecol Reprod Biol; 1995 Sep; 62(1):107-14. PubMed ID: 7493690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascorbate and dehydroascorbate influence cell cycle progression in a tobacco cell suspension.
    Potters G; Horemans N; Caubergs RJ; Asard H
    Plant Physiol; 2000 Sep; 124(1):17-20. PubMed ID: 10982417
    [No Abstract]   [Full Text] [Related]  

  • 10. The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells.
    de Pinto MC; Francis D; De Gara L
    Protoplasma; 1999; 209(1-2):90-7. PubMed ID: 18987797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dehydroascorbate uptake is impaired in the early response of Arabidopsis plant cell cultures to cadmium.
    Horemans N; Raeymaekers T; Van Beek K; Nowocin A; Blust R; Broos K; Cuypers A; Vangronsveld J; Guisez Y
    J Exp Bot; 2007; 58(15-16):4307-17. PubMed ID: 18182433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Ascorbate Carrier of Higher Plant Plasma Membranes Preferentially Translocates the Fully Oxidized (Dehydroascorbate) Molecule.
    Horemans N; Asard H; Caubergs RJ
    Plant Physiol; 1997 Aug; 114(4):1247-1253. PubMed ID: 12223769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential uptake and accumulation of oxidized vitamin C by THP-1 monocytic cells.
    Laggner H; Besau V; Goldenberg H
    Eur J Biochem; 1999 Jun; 262(3):659-65. PubMed ID: 10411625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and action of ascorbate at the plant plasma membrane.
    Horemans N; Foyer CH; Asard H
    Trends Plant Sci; 2000 Jun; 5(6):263-7. PubMed ID: 10838618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions among ascorbate, dehydroascorbate and glucose transport in cultured hippocampal neurons and glia.
    Patel M; McIntosh L; Bliss T; Ho D; Sapolsky R
    Brain Res; 2001 Oct; 916(1-2):127-35. PubMed ID: 11597599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrogenic Na+-ascorbate cotransport in cultured bovine pigmented ciliary epithelial cells.
    Helbig H; Korbmacher C; Wohlfarth J; Berweck S; Kühner D; Wiederholt M
    Am J Physiol; 1989 Jan; 256(1 Pt 1):C44-9. PubMed ID: 2912136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hormone-regulated and glucose-sensitive transport of dehydroascorbic acid in immature rat granulosa cells.
    Kodaman PH; Behrman HR
    Endocrinology; 1999 Aug; 140(8):3659-65. PubMed ID: 10433224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct mechanisms of transport of ascorbic acid and dehydroascorbic acid in intestinal epithelial cells (IEC-6).
    Fujita I; Akagi Y; Hirano J; Nakanishi T; Itoh N; Muto N; Tanaka K
    Res Commun Mol Pathol Pharmacol; 2000; 107(3-4):219-31. PubMed ID: 11484876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ascorbate transport from the apoplast to the symplast in intact leaves.
    Kollist H; Moldau H; Oksanen E; Vapaavuori E
    Physiol Plant; 2001 Nov; 113(3):377-383. PubMed ID: 12060283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehydroascorbic acid uptake and intracellular ascorbic acid accumulation in cultured Müller glial cells (TR-MUL).
    Hosoya K; Nakamura G; Akanuma S; Tomi M; Tachikawa M
    Neurochem Int; 2008 Jun; 52(7):1351-7. PubMed ID: 18353508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.