These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 12971619)
21. A technique to prevent dural adhesions to chronically implanted microelectrode arrays. Maynard EM; Fernandez E; Normann RA J Neurosci Methods; 2000 Apr; 97(2):93-101. PubMed ID: 10788663 [TBL] [Abstract][Full Text] [Related]
22. Histological evaluation of flexible neural implants; flexibility limit for reducing the tissue response? Lee HC; Ejserholm F; Gaire J; Currlin S; Schouenborg J; Wallman L; Bengtsson M; Park K; Otto KJ J Neural Eng; 2017 Jun; 14(3):036026. PubMed ID: 28470152 [TBL] [Abstract][Full Text] [Related]
23. A microdrive for use with glass or metal microelectrodes in recording from freely-moving rats. Deadwyler SA; Biela J; Rose G; West M; Lynch G Electroencephalogr Clin Neurophysiol; 1979 Dec; 47(6):752-4. PubMed ID: 91506 [TBL] [Abstract][Full Text] [Related]
24. Development of a platinized platinum/iridium electrode for use in vitro. Cote KR; Gill RC Ann Biomed Eng; 1987; 15(5):419-26. PubMed ID: 3688577 [TBL] [Abstract][Full Text] [Related]
25. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates. Malaga KA; Schroeder KE; Patel PR; Irwin ZT; Thompson DE; Nicole Bentley J; Lempka SF; Chestek CA; Patil PG J Neural Eng; 2016 Feb; 13(1):016010. PubMed ID: 26655972 [TBL] [Abstract][Full Text] [Related]
26. A floating metal microelectrode array for chronic implantation. Musallam S; Bak MJ; Troyk PR; Andersen RA J Neurosci Methods; 2007 Feb; 160(1):122-7. PubMed ID: 17067683 [TBL] [Abstract][Full Text] [Related]
28. Flexible polymer substrate and tungsten microelectrode array for an implantable neural recording system. Patrick E; Sankar V; Rowe W; Yen SF; Sanchez JC; Nishida T Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3158-61. PubMed ID: 19163377 [TBL] [Abstract][Full Text] [Related]
29. Influence of bio-coatings on the recording performance of neural electrodes. Chow WW; Herwik S; Kisban S; Ruther P; Neves H; Oscarsson S; Göthelid E Biomed Tech (Berl); 2014 Aug; 59(4):315-22. PubMed ID: 24356387 [TBL] [Abstract][Full Text] [Related]
30. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity. Chung T; Wang JQ; Wang J; Cao B; Li Y; Pang SW J Neural Eng; 2015 Oct; 12(5):056018. PubMed ID: 26394650 [TBL] [Abstract][Full Text] [Related]
31. An ex vivo method for evaluating the biocompatibility of neural electrodes in rat brain slice cultures. Koeneman BA; Lee KK; Singh A; He J; Raupp GB; Panitch A; Capco DG J Neurosci Methods; 2004 Aug; 137(2):257-63. PubMed ID: 15262069 [TBL] [Abstract][Full Text] [Related]
32. A glass/silicon composite intracortical electrode array. Jones KE; Campbell PK; Normann RA Ann Biomed Eng; 1992; 20(4):423-37. PubMed ID: 1510294 [TBL] [Abstract][Full Text] [Related]
33. Toward a comparison of microelectrodes for acute and chronic recordings. Ward MP; Rajdev P; Ellison C; Irazoqui PP Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899 [TBL] [Abstract][Full Text] [Related]
34. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy. Hébert C; Cottance M; Degardin J; Scorsone E; Rousseau L; Lissorgues G; Bergonzo P; Picaud S Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():77-84. PubMed ID: 27612691 [TBL] [Abstract][Full Text] [Related]
35. Recording properties and biocompatibility of chronically implanted polymer-based intrafascicular electrodes. Malmstrom JA; McNaughton TG; Horch KW Ann Biomed Eng; 1998; 26(6):1055-64. PubMed ID: 9846943 [TBL] [Abstract][Full Text] [Related]
37. Flexible electrode technology for peripheral nerve interfacing. Durand DM Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6060. PubMed ID: 18003396 [No Abstract] [Full Text] [Related]
38. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing. Hébert C; Warnking J; Depaulis A; Garçon LA; Mermoux M; Eon D; Mailley P; Omnès F Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():25-31. PubMed ID: 25491956 [TBL] [Abstract][Full Text] [Related]
39. Design, in vitro and in vivo assessment of a multi-channel sieve electrode with integrated multiplexer. Ramachandran A; Schuettler M; Lago N; Doerge T; Koch KP; Navarro X; Hoffmann KP; Stieglitz T J Neural Eng; 2006 Jun; 3(2):114-24. PubMed ID: 16705267 [TBL] [Abstract][Full Text] [Related]
40. Integrated wireless neural interface based on the Utah electrode array. Kim S; Bhandari R; Klein M; Negi S; Rieth L; Tathireddy P; Toepper M; Oppermann H; Solzbacher F Biomed Microdevices; 2009 Apr; 11(2):453-66. PubMed ID: 19067174 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]