BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12972944)

  • 21. Identification of neonatal hearing impairment: distortion product otoacoustic emissions during the perinatal period.
    Gorga MP; Norton SJ; Sininger YS; Cone-Wesson B; Folsom RC; Vohr BR; Widen JE; Neely ST
    Ear Hear; 2000 Oct; 21(5):400-24. PubMed ID: 11059701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationships among standard and wideband measures of middle ear function and distortion product otoacoustic emissions.
    Schairer KS; Morrison B; Szewczyk E; Fowler CG
    J Am Acad Audiol; 2011 May; 22(5):253-64. PubMed ID: 21756841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)].
    Hoth S
    Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of neonatal hearing impairment: evaluation of transient evoked otoacoustic emission, distortion product otoacoustic emission, and auditory brain stem response test performance.
    Norton SJ; Gorga MP; Widen JE; Folsom RC; Sininger Y; Cone-Wesson B; Vohr BR; Mascher K; Fletcher K
    Ear Hear; 2000 Oct; 21(5):508-28. PubMed ID: 11059707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vulnerability of the gerbil cochlea to sound exposure during reversible ischemia.
    Mom T; Bonfils P; Gilain L; Avan P
    Hear Res; 1999 Oct; 136(1-2):65-74. PubMed ID: 10511625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Test-retest reliability of distortion-product thresholds compared to behavioral auditory thresholds.
    Bader K; Dierkes L; Braun LH; Gummer AW; Dalhoff E; Zelle D
    Hear Res; 2021 Jul; 406():108232. PubMed ID: 33984603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distortion-product otoacoustic emission monitoring of cochlear blood flow.
    Telischi FF; Stagner B; Widick MP; Balkany TJ; Lonsbury-Martin BL
    Laryngoscope; 1998 Jun; 108(6):837-42. PubMed ID: 9628498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distortion-product emissions in rabbit: II. Prediction of chronic-noise effects by brief pure-tone exposures.
    Mensh BD; Lonsbury-Martin BL; Martin GK
    Hear Res; 1993 Oct; 70(1):65-72. PubMed ID: 8276733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of furosemide on distortion product otoacoustic emissions and on neuronal responses in the anteroventral cochlear nucleus.
    Rübsamen R; Mills DM; Rubel EW
    J Neurophysiol; 1995 Oct; 74(4):1628-38. PubMed ID: 8989399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous measurement of electrocochleography and cochlear blood flow during cochlear hypoxia in rabbits.
    Yavuz E; Morawski K; Telischi FF; Ozdamar O; Delgado RE; Manns F; Parel JM
    J Neurosci Methods; 2005 Aug; 147(1):55-64. PubMed ID: 16054516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cochlear ischemia induced by circulating iron particles under magnetic control: an animal model for sudden hearing loss.
    Schweinfurth JM; Cacace AT
    Am J Otol; 2000 Sep; 21(5):636-40. PubMed ID: 10993450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans.
    Dewey JB; Dhar S
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):89-110. PubMed ID: 27681700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Comparison of Distortion Product Otoacoustic Emission Properties in Ménière's Disease Patients and Normal-Hearing Participants.
    Drexl M; Krause E; Gürkov R
    Ear Hear; 2018; 39(1):42-47. PubMed ID: 28671918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distortion-product otoacoustic emissions in middle-aged subjects with normal versus potentially presbyacusic high-frequency hearing loss.
    Nieschalk M; Hustert B; Stoll W
    Audiology; 1998; 37(2):83-99. PubMed ID: 9547922
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Origin of cubic difference tones generated by high-intensity stimuli: effect of ischemia and auditory fatigue on the gerbil cochlea.
    Mom T; Bonfils P; Gilain L; Avan P
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1477-88. PubMed ID: 11572358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Contralateral suppression of latency during distortion product otoacoustic emissions detection in guinea pigs].
    Kong W; Yang Y; Zhang W
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Aug; 36(4):271-4. PubMed ID: 12761994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Otoacoustic emissions measurements in children during the chemotherapy because of the acute lymphoblastic leukemia].
    Lisowska G; Namysłowski G; Hajduk A; Polok A; Tomaszewska R; Misiołek M
    Otolaryngol Pol; 2006; 60(3):415-20. PubMed ID: 16989457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of calibration method on distortion-product otoacoustic emission measurements: II. threshold prediction.
    Rogers AR; Burke SR; Kopun JG; Tan H; Neely ST; Gorga MP
    Ear Hear; 2010 Aug; 31(4):546-54. PubMed ID: 20458245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.