BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12973830)

  • 1. Development of midline glial populations at the corticoseptal boundary.
    Shu T; Puche AC; Richards LJ
    J Neurobiol; 2003 Oct; 57(1):81-94. PubMed ID: 12973830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of radial glia-like cells from embryonic stem cells.
    Liour SS; Yu RK
    Glia; 2003 Apr; 42(2):109-17. PubMed ID: 12655595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes.
    Voigt T
    J Comp Neurol; 1989 Nov; 289(1):74-88. PubMed ID: 2808761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes.
    deAzevedo LC; Fallet C; Moura-Neto V; Daumas-Duport C; Hedin-Pereira C; Lent R
    J Neurobiol; 2003 Jun; 55(3):288-98. PubMed ID: 12717699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain.
    Levitt P; Rakic P
    J Comp Neurol; 1980 Oct; 193(3):815-40. PubMed ID: 7002963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peripapillary glial cells in the chick retina: A special glial cell type expressing astrocyte, radial glia, neuron, and oligodendrocyte markers throughout development.
    Quesada A; Prada FA; Aguilera Y; Espinar A; Carmona A; Prada C
    Glia; 2004 May; 46(4):346-55. PubMed ID: 15095365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of candidate genes at the corticoseptal boundary during development.
    Shen WB; Plachez C; Mongi AS; Richards LJ
    Gene Expr Patterns; 2006 Jun; 6(5):471-81. PubMed ID: 16458080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubules are critical for radial glial morphology: possible regulation by MAPs and MARKs.
    Li H; Berlin Y; Hart RP; Grumet M
    Glia; 2003 Oct; 44(1):37-46. PubMed ID: 12951655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost.
    Arochena M; Anadón R; Díaz-Regueira SM
    J Comp Neurol; 2004 Feb; 469(3):413-36. PubMed ID: 14730591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A population of human brain parenchymal cells express markers of glial, neuronal and early neural cells and differentiate into cells of neuronal and glial lineages.
    Rieske P; Azizi SA; Augelli B; Gaughan J; Krynska B
    Eur J Neurosci; 2007 Jan; 25(1):31-7. PubMed ID: 17241264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Notch2 expression negatively correlates with glial differentiation in the postnatal mouse brain.
    Tanaka M; Kadokawa Y; Hamada Y; Marunouchi T
    J Neurobiol; 1999 Dec; 41(4):524-39. PubMed ID: 10590176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unified hypothesis on the lineage of neural stem cells.
    Alvarez-Buylla A; García-Verdugo JM; Tramontin AD
    Nat Rev Neurosci; 2001 Apr; 2(4):287-93. PubMed ID: 11283751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of glial fibrillary acidic protein and astroglial architecture in the brain of a continuously growing fish, the rainbow trout.
    Alunni A; Vaccari S; Torcia S; Meomartini ME; Nicotra A; Alfei L
    Eur J Histochem; 2005; 49(2):157-66. PubMed ID: 15967744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glial-defined rhombomere boundaries in developing Xenopus hindbrain.
    Yoshida M; Colman DR
    J Comp Neurol; 2000 Aug; 424(1):47-57. PubMed ID: 10888738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-lasting coexpression of nestin and glial fibrillary acidic protein in primary cultures of astroglial cells with a major participation of nestin(+)/GFAP(-) cells in cell proliferation.
    Sergent-Tanguy S; Michel DC; Neveu I; Naveilhan P
    J Neurosci Res; 2006 Jun; 83(8):1515-24. PubMed ID: 16612832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embryonic development of the Drosophila brain. II. Pattern of glial cells.
    Hartenstein V; Nassif C; Lekven A
    J Comp Neurol; 1998 Dec; 402(1):32-47. PubMed ID: 9831044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An oligodendroglial progenitor cell line FBD-102b possibly secretes a radial glia-inducing factor.
    Horiuchi M; Tomooka Y
    Neurosci Res; 2006 Oct; 56(2):213-9. PubMed ID: 16884801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of Bergmann glial somata and processes: implications for function.
    Reichenbach A; Siegel A; Rickmann M; Wolff JR; Noone D; Robinson SR
    J Hirnforsch; 1995; 36(4):509-17. PubMed ID: 8568221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphogenesis and proliferation of the larval brain glia in Drosophila.
    Pereanu W; Shy D; Hartenstein V
    Dev Biol; 2005 Jul; 283(1):191-203. PubMed ID: 15907832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential patterns of glial fibrillary acidic protein-immunolabeling in the brain of adult lizards.
    Ahboucha S; Laalaoui A; Didier-Bazes M; Montange M; Cooper HM; Gamrani H
    J Comp Neurol; 2003 Sep; 464(2):159-71. PubMed ID: 12898609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.