BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 12973960)

  • 1. A new model for the oxyhaemoglobin dissociation curve.
    Anstey C
    Anaesth Intensive Care; 2003 Aug; 31(4):376-87. PubMed ID: 12973960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Siggaard-Andersen algorithm-derived p50 parameters: perturbation by abnormal hemoglobin-oxygen affinity and acid-base disturbances.
    Morgan TJ; Endre ZH; Kanowski DM; Worthley LI; Jones RD
    J Lab Clin Med; 1995 Oct; 126(4):365-72. PubMed ID: 7561445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The estimation of p50 by the algorithm proposed by Siggard-Andersen. Its experimental assessment in critical patients].
    Guadagnucci A; Vignali G; Mondello V; Tulli G; Leonardi F
    Minerva Med; 1992; 83(7-8):451-5. PubMed ID: 1522969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro oxyhaemoglobin saturation measurements in haemoglobin solutions using fibreoptic pulmonary artery catheters.
    Kong CS; Ryder IG; Kahn R; Gregory L; Mackenzie CF
    Br J Anaesth; 1995 Feb; 74(2):201-8. PubMed ID: 7696072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The accuracy of in vivo P50 at high haemoglobin saturation.
    Anstey C
    Anaesth Intensive Care; 2000 Feb; 28(1):31-6. PubMed ID: 10701033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is there an optimal P50 of haemoglobin? Considerations about the significance of a left- or right-shift of the oxyhaemoglobin dissociation curve.
    Sold MJ
    Anaesthesia; 1982 Jun; 37(6):640-5. PubMed ID: 7091622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A quick and simple method for estimating the oxyhemoglobin dissociation curve].
    Lanza V
    Ann Fr Anesth Reanim; 1989; 8(4):382-4. PubMed ID: 2817553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Different methods of determining the position on the oxyhemoglobin dissociation curve].
    Mosolova LA; Islanova OV
    Anesteziol Reanimatol; 1989; (6):18-22. PubMed ID: 2629532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human whole-blood oxygen affinity: effect of carbon monoxide.
    Zwart A; Kwant G; Oeseburg B; Zijlstra WG
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Jul; 57(1):14-20. PubMed ID: 6432749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood oxygen transport and endothelial dysfunction in patients with arterial hypertension.
    Zinchuk VV; Pronko TP; Lis MA
    Clin Physiol Funct Imaging; 2004 Jul; 24(4):205-11. PubMed ID: 15233834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oxyhaemoglobin dissociation curve is generally left-shifted in COVID-19 patients at admission to hospital, and this is associated with lower mortality.
    Valle A; Rodriguez J; CamiƱa F; Rodriguez-Segade M; Ortola JB; Rodriguez-Segade S
    Br J Haematol; 2022 Nov; 199(3):332-338. PubMed ID: 35971642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How to determine and use base excess (BE) in perinatal medicine.
    Roemer VM
    Z Geburtshilfe Neonatol; 2007 Dec; 211(6):224-9. PubMed ID: 18176902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel allosteric mechanism in haemoglobin. Structure of bovine deoxyhaemoglobin, absence of specific chloride-binding sites and origin of the chloride-linked Bohr effect in bovine and human haemoglobin.
    Perutz MF; Fermi G; Poyart C; Pagnier J; Kister J
    J Mol Biol; 1993 Oct; 233(3):536-45. PubMed ID: 8411160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixing technique for study of oxygen-hemoglobin equilibrium: a critical evaluation.
    Scheid P; Meyer M
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Nov; 45(5):818-22. PubMed ID: 32162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The oxygen dissociation curve: quantifying the shift.
    Hamilton C; Steinlechner B; Gruber E; Simon P; Wollenek G
    Perfusion; 2004 May; 19(3):141-4. PubMed ID: 15298420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue in cancer patients is not related to changes in oxyhaemoglobin dissociation.
    Stone PC; Abdul-Wahab A; Gibson JS; Wright RJ; Andrews PL
    Support Care Cancer; 2005 Oct; 13(10):854-8. PubMed ID: 16010531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Determination of the degree of saturation of hemoglobin with oxygen in blood microsamples].
    Mosolova LA; Maksimovich NA; Dremza IK
    Anesteziol Reanimatol; 1990; (5):67-9. PubMed ID: 2288434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Venous crossover PO2. A reference point for assessing the physiological significance of alterations in oxyhaemoglobin equilibrium.
    Stewart RI
    Respiration; 1985; 48(1):58-61. PubMed ID: 4023438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen saturation calculation procedures: a critical analysis of six equations for the determination of oxygen saturation.
    Breuer HW; Groeben H; Breuer J; Worth H
    Intensive Care Med; 1989; 15(6):385-9. PubMed ID: 2808896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The in-vivo oxyhaemoglobin dissociation curve at sea level and high altitude.
    Balaban DY; Duffin J; Preiss D; Mardimae A; Vesely A; Slessarev M; Zubieta-Calleja GR; Greene ER; Macleod DB; Fisher JA
    Respir Physiol Neurobiol; 2013 Mar; 186(1):45-52. PubMed ID: 23313855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.