These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 12974348)
1. Sensitivity analyses for four pesticide leaching models. Dubus IG; Brown CD; Beulke S Pest Manag Sci; 2003 Sep; 59(9):962-82. PubMed ID: 12974348 [TBL] [Abstract][Full Text] [Related]
2. Parameterisation, evaluation and comparison of pesticide leaching models to data from a Bologna field site, Italy. Garratt JA; Capri E; Trevisan M; Errera G; Wilkins RM Pest Manag Sci; 2003 Jan; 59(1):3-20. PubMed ID: 12558095 [TBL] [Abstract][Full Text] [Related]
3. The pesticide module of the Root Zone Water Quality Model (RZWQM): testing and sensitivity analysis of selected algorithms for pesticide fate and surface runoff. Ma Q; Wauchope RD; Rojas KW; Ahuja LR; Ma L; Malone RW Pest Manag Sci; 2004 Mar; 60(3):240-52. PubMed ID: 15025236 [TBL] [Abstract][Full Text] [Related]
4. Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks. Stenemo F; Lindahl AM; Gärdenäs A; Jarvis N J Contam Hydrol; 2007 Aug; 93(1-4):270-83. PubMed ID: 17531347 [TBL] [Abstract][Full Text] [Related]
5. Sensitivity and first-step uncertainty analyses for the preferential flow model MACRO. Dubus IG; Brown CD J Environ Qual; 2002; 31(1):227-40. PubMed ID: 11837426 [TBL] [Abstract][Full Text] [Related]
6. Modeling hydrology, metribuzin degradation and metribuzin transport in macroporous tilled and no-till silt loam soil using RZWQM. Malone RW; Ma L; Wauchope RD; Ahuja LR; Rojas KW; Ma Q; Warner R; Byers M Pest Manag Sci; 2004 Mar; 60(3):253-66. PubMed ID: 15025237 [TBL] [Abstract][Full Text] [Related]
7. Influence of input uncertainty on prediction of within-field pesticide leaching risks. Lindahl AM; Söderström M; Jarvis N J Contam Hydrol; 2008 Jun; 98(3-4):106-14. PubMed ID: 18495293 [TBL] [Abstract][Full Text] [Related]
8. Influence of ageing of residues on the availability of herbicides for leaching. Walker A; Rodriguez-Cruz MS; Mitchell MJ Environ Pollut; 2005 Jan; 133(1):43-51. PubMed ID: 15327855 [TBL] [Abstract][Full Text] [Related]
9. Lysimeter experiment to investigate the potential influence of diffusion-limited sorption on pesticide availability for leaching. van Beinum W; Beulke S; Fryer C; Brown C J Agric Food Chem; 2006 Nov; 54(24):9152-9. PubMed ID: 17117804 [TBL] [Abstract][Full Text] [Related]
10. A lysimeter experiment to investigate temporal changes in the availability of pesticide residues for leaching. Renaud FG; Brown CD; Fryer CJ; Walker A Environ Pollut; 2004 Sep; 131(1):81-91. PubMed ID: 15210278 [TBL] [Abstract][Full Text] [Related]
11. Quantification of acetochlor degradation in the unsaturated zone using two novel in situ field techniques: comparisons with laboratory-generated data and implications for groundwater risk assessments. Mills MS; Hill IR; Newcombe AC; Simmons ND; Vaughan PC; Verity AA Pest Manag Sci; 2001 Apr; 57(4):351-9. PubMed ID: 11455814 [TBL] [Abstract][Full Text] [Related]
12. Uncalibrated modelling of conservative tracer and pesticide leaching to groundwater: comparison of potential Tier II exposure assessment models. Fox GA; Sabbagh GJ; Chen W; Russell MH Pest Manag Sci; 2006 Jun; 62(6):537-50. PubMed ID: 16625679 [TBL] [Abstract][Full Text] [Related]
13. Identification of key climatic factors regulating the transport of pesticides in leaching and to tile drains. Nolan BT; Dubus IG; Surdyk N; Fowler HJ; Burton A; Hollis JM; Reichenberger S; Jarvis NJ Pest Manag Sci; 2008 Sep; 64(9):933-44. PubMed ID: 18416432 [TBL] [Abstract][Full Text] [Related]
14. Inverse modelling for estimating sorption and degradation parameters for pesticides. Dubus IG; Beulke S; Brown CD; Gottesbüren B; Dieses A Pest Manag Sci; 2004 Sep; 60(9):859-74. PubMed ID: 15382500 [TBL] [Abstract][Full Text] [Related]
15. Test of the Root Zone Water Quality Model (RZWQM) for predicting runoff of atrazine, alachlor and fenamiphos species from conventional-tillage corn mesoplots. Ma Q; Wauchope RD; Ma L; Rojas KW; Malone RW; Ahuja LR Pest Manag Sci; 2004 Mar; 60(3):267-76. PubMed ID: 15025238 [TBL] [Abstract][Full Text] [Related]
16. Herbicide leaching as affected by macropore flow and within-storm rainfall intensity variation: a RZWQM simulation. Malone RW; Weatherington-Rice J; Shipitalo MJ; Fausey N; Ma L; Ahuja LR; Wauchope RD; Ma Q Pest Manag Sci; 2004 Mar; 60(3):277-85. PubMed ID: 15025239 [TBL] [Abstract][Full Text] [Related]
17. Soil column leaching of pesticides. Katagi T Rev Environ Contam Toxicol; 2013; 221():1-105. PubMed ID: 23090630 [TBL] [Abstract][Full Text] [Related]
18. Using a linked soil model emulator and unsaturated zone leaching model to account for preferential flow when assessing the spatially distributed risk of pesticide leaching to groundwater in England and Wales. Holman IP; Dubus IG; Hollis JM; Brown CD Sci Total Environ; 2004 Jan; 318(1-3):73-88. PubMed ID: 14654276 [TBL] [Abstract][Full Text] [Related]
19. Testing MACRO (version 5.1) for pesticide leaching in a Dutch clay soil. Scorza Júnior RP; Jarvis NJ; Boesten JJ; van der Zee SE; Roulier S Pest Manag Sci; 2007 Oct; 63(10):1011-25. PubMed ID: 17708522 [TBL] [Abstract][Full Text] [Related]
20. Simulation of pesticide leaching in a cracking clay soil with the PEARL model. Scorza Júnior RP; Boesten JJ Pest Manag Sci; 2005 May; 61(5):432-48. PubMed ID: 15643643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]