These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 12974637)
1. Manganese oxidation by modified reaction centers from Rhodobacter sphaeroides. Kálmán L; LoBrutto R; Allen JP; Williams JC Biochemistry; 2003 Sep; 42(37):11016-22. PubMed ID: 12974637 [TBL] [Abstract][Full Text] [Related]
2. Energetics for oxidation of a bound manganese cofactor in modified bacterial reaction centers. Kálmán L; Williams JC; Allen JP Biochemistry; 2011 Apr; 50(16):3310-20. PubMed ID: 21375274 [TBL] [Abstract][Full Text] [Related]
3. Proton release due to manganese binding and oxidation in modified bacterial reaction centers. Kálmán L; Thielges MC; Williams JC; Allen JP Biochemistry; 2005 Oct; 44(40):13266-73. PubMed ID: 16201752 [TBL] [Abstract][Full Text] [Related]
4. Design of a redox-linked active metal site: manganese bound to bacterial reaction centers at a site resembling that of photosystem II. Thielges M; Uyeda G; Cámara-Artigas A; Kálmán L; Williams JC; Allen JP Biochemistry; 2005 May; 44(20):7389-94. PubMed ID: 15895982 [TBL] [Abstract][Full Text] [Related]
5. Iron as a bound secondary electron donor in modified bacterial reaction centers. Kálmán L; LoBrutto R; Williams JC; Allen JP Biochemistry; 2006 Nov; 45(46):13869-74. PubMed ID: 17105205 [TBL] [Abstract][Full Text] [Related]
6. Correlation of proton release and electrochromic shifts of the optical spectrum due to oxidation of tyrosine in reaction centers from Rhodobacter sphaeroides. Kálmán L; LoBrutto R; Narváez AJ; Williams JC; Allen JP Biochemistry; 2003 Nov; 42(45):13280-6. PubMed ID: 14609339 [TBL] [Abstract][Full Text] [Related]
7. Trapped tyrosyl radical populations in modified reaction centers from Rhodobacter sphaeroides. Narváez AJ; LoBrutto R; Allen JP; Williams JC Biochemistry; 2004 Nov; 43(45):14379-84. PubMed ID: 15533042 [TBL] [Abstract][Full Text] [Related]
8. Evidence for delocalized anticooperative flash induced proton binding as revealed by mutants at the M266His iron ligand in bacterial reaction centers. Cheap H; Tandori J; Derrien V; Benoit M; de Oliveira P; Koepke J; Lavergne J; Maroti P; Sebban P Biochemistry; 2007 Apr; 46(15):4510-21. PubMed ID: 17378585 [TBL] [Abstract][Full Text] [Related]
9. Dependence of tyrosine oxidation in highly oxidizing bacterial reaction centers on pH and free-energy difference. Kálmán L; Narváez AJ; LoBrutto R; Williams JC; Allen JP Biochemistry; 2004 Oct; 43(40):12905-12. PubMed ID: 15461463 [TBL] [Abstract][Full Text] [Related]
10. Light-induced conformational changes in photosynthetic reaction centers: redox-regulated proton pathway near the dimer. Deshmukh SS; Williams JC; Allen JP; Kálmán L Biochemistry; 2011 Apr; 50(16):3321-31. PubMed ID: 21410139 [TBL] [Abstract][Full Text] [Related]
11. P+HA- charge recombination reaction rate constant in Rhodobacter sphaeroides reaction centers is independent of the P/P+ midpoint potential. Tang CK; Williams JC; Taguchi AK; Allen JP; Woodbury NW Biochemistry; 1999 Jul; 38(27):8794-9. PubMed ID: 10393555 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen atom transfer reactions of imido manganese(V) corrole: one reaction with two mechanistic pathways. Zdilla MJ; Dexheimer JL; Abu-Omar MM J Am Chem Soc; 2007 Sep; 129(37):11505-11. PubMed ID: 17718564 [TBL] [Abstract][Full Text] [Related]
13. The S0 state of the water oxidizing complex in photosystem II: pH dependence of the EPR split signal induction and mechanistic implications. Sjöholm J; Havelius KG; Mamedov F; Styring S Biochemistry; 2009 Oct; 48(40):9393-404. PubMed ID: 19736946 [TBL] [Abstract][Full Text] [Related]
14. Binding and Energetics of Electron Transfer between an Artificial Four-Helix Mn-Protein and Reaction Centers from Rhodobacter sphaeroides. Espiritu E; Olson TL; Williams JC; Allen JP Biochemistry; 2017 Dec; 56(49):6460-6469. PubMed ID: 29131579 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the redox interaction between Mn-bicarbonate complexes and reaction centers from Rhodobacter sphaeroides R-26, Chromatium minutissimum, and Chloroflexus aurantiacus. Terentyev VV; Shkuropatov AY; Shkuropatova VA; Shuvalov VA; Klimov VV Biochemistry (Mosc); 2011 Dec; 76(12):1360-6. PubMed ID: 22150281 [TBL] [Abstract][Full Text] [Related]
16. Visible light-induced electron transfer from di-mu-oxo-bridged dinuclear Mn complexes to Cr centers in silica nanopores. Weare WW; Pushkar Y; Yachandra VK; Frei H J Am Chem Soc; 2008 Aug; 130(34):11355-63. PubMed ID: 18665599 [TBL] [Abstract][Full Text] [Related]
17. Iron-blocking the high-affinity Mn-binding site in photosystem II facilitates identification of the type of hydrogen bond participating in proton-coupled electron transport via YZ. Semin BK; Lovyagina ER; Timofeev KN; Ivanov II; Rubin AB; Seibert M Biochemistry; 2005 Jul; 44(28):9746-57. PubMed ID: 16008359 [TBL] [Abstract][Full Text] [Related]
18. pH dependence of the donor side reactions in Ca2+-depleted photosystem II. Styring S; Feyziyev Y; Mamedov F; Hillier W; Babcock GT Biochemistry; 2003 May; 42(20):6185-92. PubMed ID: 12755621 [TBL] [Abstract][Full Text] [Related]
19. Bicarbonate is a native cofactor for assembly of the manganese cluster of the photosynthetic water oxidizing complex. Kinetics of reconstitution of O2 evolution by photoactivation. Baranov SV; Tyryshkin AM; Katz D; Dismukes GC; Ananyev GM; Klimov VV Biochemistry; 2004 Feb; 43(7):2070-9. PubMed ID: 14967047 [TBL] [Abstract][Full Text] [Related]
20. Electronic structure of the Mn-cofactor of modified bacterial reaction centers measured by electron paramagnetic resonance and electron spin echo envelope modulation spectroscopies. Tufts AA; Flores M; Olson TL; Williams JC; Allen JP Photosynth Res; 2014 May; 120(1-2):207-20. PubMed ID: 23868400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]