These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12975373)

  • 21. Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer.
    Mizuno H; Sawano A; Eli P; Hama H; Miyawaki A
    Biochemistry; 2001 Feb; 40(8):2502-10. PubMed ID: 11327872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins.
    Subach OM; Malashkevich VN; Zencheck WD; Morozova KS; Piatkevich KD; Almo SC; Verkhusha VV
    Chem Biol; 2010 Apr; 17(4):333-41. PubMed ID: 20416505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromophore formation in DsRed occurs by a branched pathway.
    Strack RL; Strongin DE; Mets L; Glick BS; Keenan RJ
    J Am Chem Soc; 2010 Jun; 132(24):8496-505. PubMed ID: 20509651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GFP-like chromoproteins as a source of far-red fluorescent proteins.
    Gurskaya NG; Fradkov AF; Terskikh A; Matz MV; Labas YA; Martynov VI; Yanushevich YG; Lukyanov KA; Lukyanov SA
    FEBS Lett; 2001 Oct; 507(1):16-20. PubMed ID: 11682051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Red fluorescent protein DsRed from Discosoma sp. as a reporter protein in higher plants.
    Dietrich C; Maiss E
    Biotechniques; 2002 Feb; 32(2):286, 288-90, 292-3. PubMed ID: 11848404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interconversion of Anthozoa GFP-like fluorescent and non-fluorescent proteins by mutagenesis.
    Bulina ME; Chudakov DM; Mudrik NN; Lukyanov KA
    BMC Biochem; 2002 Apr; 3():7. PubMed ID: 11972899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oligomerization of DsRed is required for the generation of a functional red fluorescent chromophore.
    Sacchetti A; Subramaniam V; Jovin TM; Alberti S
    FEBS Lett; 2002 Aug; 525(1-3):13-9. PubMed ID: 12163153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed.
    Habuchi S; Cotlet M; Gensch T; Bednarz T; Haber-Pohlmeier S; Rozenski J; Dirix G; Michiels J; Vanderleyden J; Heberle J; De Schryver FC; Hofkens J
    J Am Chem Soc; 2005 Jun; 127(25):8977-84. PubMed ID: 15969574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The 2.1A crystal structure of the far-red fluorescent protein HcRed: inherent conformational flexibility of the chromophore.
    Wilmann PG; Petersen J; Pettikiriarachchi A; Buckle AM; Smith SC; Olsen S; Perugini MA; Devenish RJ; Prescott M; Rossjohn J
    J Mol Biol; 2005 May; 349(1):223-37. PubMed ID: 15876379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Denaturation studies reveal significant differences between GFP and blue fluorescent protein.
    Saeed IA; Ashraf SS
    Int J Biol Macromol; 2009 Oct; 45(3):236-41. PubMed ID: 19501614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A synthetic GFP-like chromophore undergoes base-catalyzed autoxidation into acylimine red form.
    Ivashkin PE; Lukyanov KA; Lukyanov S; Yampolsky IV
    J Org Chem; 2011 Apr; 76(8):2782-91. PubMed ID: 21391723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High stability of Discosoma DsRed as compared to Aequorea EGFP.
    Verkhusha VV; Kuznetsova IM; Stepanenko OV; Zaraisky AG; Shavlovsky MM; Turoverov KK; Uversky VN
    Biochemistry; 2003 Jul; 42(26):7879-84. PubMed ID: 12834339
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural analysis of the immature form of the GFP homologue DsRed.
    Zaveer MS; Zimmer M
    Bioorg Med Chem Lett; 2003 Nov; 13(22):3919-22. PubMed ID: 14592475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insight into the common mechanism of the chromophore formation in the red fluorescent proteins: the elusive blue intermediate revealed.
    Bravaya KB; Subach OM; Korovina N; Verkhusha VV; Krylov AI
    J Am Chem Soc; 2012 Feb; 134(5):2807-14. PubMed ID: 22239269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of the red fluorescent protein from a lancelet (Branchiostoma lanceolatum): a novel GYG chromophore covalently bound to a nearby tyrosine.
    Pletnev VZ; Pletneva NV; Lukyanov KA; Souslova EA; Fradkov AF; Chudakov DM; Chepurnykh T; Yampolsky IV; Wlodawer A; Dauter Z; Pletnev S
    Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1850-60. PubMed ID: 23999308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excited states of fluorescent proteins, mKO and DsRed: chromophore-protein electrostatic interaction behind the color variations.
    Hasegawa JY; Ise T; Fujimoto KJ; Kikuchi A; Fukumura E; Miyawaki A; Shiro Y
    J Phys Chem B; 2010 Mar; 114(8):2971-9. PubMed ID: 20131896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed).
    Bevis BJ; Glick BS
    Nat Biotechnol; 2002 Jan; 20(1):83-7. PubMed ID: 11753367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circular dichroism spectroscopy of fluorescent proteins.
    Visser NV; Hink MA; Borst JW; van der Krogt GN; Visser AJ
    FEBS Lett; 2002 Jun; 521(1-3):31-5. PubMed ID: 12067720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amino acid substitutions around the chromophore of the chromoprotein Rtms5 influence polypeptide cleavage.
    Turcic K; Pettikiriarachchi A; Battad J; Wilmann PG; Rossjohn J; Dove SG; Devenish RJ; Prescott M
    Biochem Biophys Res Commun; 2006 Feb; 340(4):1139-43. PubMed ID: 16414348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanistic diversity of red fluorescence acquisition by GFP-like proteins.
    Wachter RM; Watkins JL; Kim H
    Biochemistry; 2010 Sep; 49(35):7417-27. PubMed ID: 20666493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.