These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 12975802)

  • 1. Turning manoeuvres in free-flying locusts: two-channel radio-telemetric transmission of muscle activity.
    Kutsch W; Berger S; Kautz H
    J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):139-50. PubMed ID: 12975802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turning manoeuvres in free-flying locusts: high-speed video-monitoring.
    Berger S; Kutsch W
    J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):127-38. PubMed ID: 12975801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active control of free flight manoeuvres in a hawkmoth, Agrius convolvuli.
    Wang H; Ando N; Kanzaki R
    J Exp Biol; 2008 Feb; 211(Pt 3):423-32. PubMed ID: 18203998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic startle/escape reactions in tethered flying locusts: motor patterns and wing kinematics underlying intentional steering.
    Dawson JW; Leung FH; Robertson RM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jul; 190(7):581-600. PubMed ID: 15127218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A radiotelemetric 2-channel unit for transmission of muscle potentials during free flight of the desert locust, Schistocerca gregaria.
    Fischer H; Kautz H; Kutsch W
    J Neurosci Methods; 1996 Jan; 64(1):39-45. PubMed ID: 8869482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of flight loss in a Mexican grasshopper, Barytettix psolus. I. Motor and sensory cells.
    Arbas EA
    J Comp Neurol; 1983 Jun; 216(4):369-80. PubMed ID: 6308070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings.
    Maybury WJ; Lehmann FO
    J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilateral flight muscle activity predicts wing kinematics and 3-dimensional body orientation of locusts responding to looming objects.
    McMillan GA; Loessin V; Gray JR
    J Exp Biol; 2013 Sep; 216(Pt 17):3369-80. PubMed ID: 23737560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory-evoked evasive manoeuvres in free-flying locusts and moths.
    Dawson JW; Kutsch W; Robertson RM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jan; 190(1):69-84. PubMed ID: 14655020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The aerodynamics of hovering flight in Drosophila.
    Fry SN; Sayaman R; Dickinson MH
    J Exp Biol; 2005 Jun; 208(Pt 12):2303-18. PubMed ID: 15939772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contractile activity of the pectoralis in the zebra finch according to mode and velocity of flap-bounding flight.
    Tobalske BW; Puccinelli LA; Sheridan DC
    J Exp Biol; 2005 Aug; 208(Pt 15):2895-901. PubMed ID: 16043594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changing motor patterns of the 3rd axillary muscle activities associated with longitudinal control in freely flying hawkmoths.
    Ando N; Kanzaki R
    Zoolog Sci; 2004 Feb; 21(2):123-30. PubMed ID: 14993822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus). I. Kinematic and neuromuscular control of turning.
    Hedrick TL; Biewener AA
    J Exp Biol; 2007 Jun; 210(Pt 11):1897-911. PubMed ID: 17515416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromuscular control of aerodynamic forces and moments in the blowfly, Calliphora vicina.
    Balint CN; Dickinson MH
    J Exp Biol; 2004 Oct; 207(Pt 22):3813-38. PubMed ID: 15472014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The aerodynamics of free-flight maneuvers in Drosophila.
    Fry SN; Sayaman R; Dickinson MH
    Science; 2003 Apr; 300(5618):495-8. PubMed ID: 12702878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of wing pronation in evasive steering of locusts.
    Ribak G; Rand D; Weihs D; Ayali A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jul; 198(7):541-55. PubMed ID: 22547148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers.
    Lindhe Norberg UM; Winter Y
    J Exp Biol; 2006 Oct; 209(Pt 19):3887-97. PubMed ID: 16985205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and neural control of the pectoralis in pigeons: implications for flight mechanics.
    Dial KP; Kaplan SR; Goslow GE; Jenkins FA
    Anat Rec; 1987 Jul; 218(3):284-7. PubMed ID: 3631542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular trigger for high-speed wing beats in a bee.
    Iwamoto H; Yagi N
    Science; 2013 Sep; 341(6151):1243-6. PubMed ID: 23970560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On mathematical modelling of insect flight dynamics in the context of micro air vehicles.
    Zbikowski R; Ansari SA; Knowles K
    Bioinspir Biomim; 2006 Jun; 1(2):R26-37. PubMed ID: 17671303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.