BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 12975808)

  • 1. Scavenger receptors facilitate protein transport in the trophotaenial placenta of the goodeid fish, Ameca splendens (Teleostei: Atheriniformes).
    Schindler JF
    J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):197-212. PubMed ID: 12975808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aminopeptidases function as endocytic receptors in the trophotaenial placenta of the goodeid fish, Ameca splendens (Teleostei: Atheriniformes).
    Schindler JF
    J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):213-22. PubMed ID: 12975809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-gold transport in the endocytic complex of trophotaenial absorptive cells in the embryos of a goodeid teleost.
    Schindler JF; Greven H
    Anat Rec; 1992 Jul; 233(3):387-98. PubMed ID: 1609971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The trophotaenial placenta of a viviparous goodeid fish. III: Protein uptake by trophotaeniae, the embryonic component.
    Lombardi J; Wourms JP
    J Exp Zool; 1985 Nov; 236(2):165-79. PubMed ID: 4067530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of placental exchange surfaces in goodeid fishes (Teleostei: Atheriniformes).
    Schindler JF
    J Morphol; 2015 Aug; 276(8):991-1003. PubMed ID: 24797516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The trophotaenial placenta of a viviparous goodeid fish. II. Ultrastructure of trophotaeniae, the embryonic component.
    Lombardi J; Wourms JP
    J Morphol; 1985 Jun; 184(3):293-309. PubMed ID: 4057261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The trophotaenial placenta of a viviparous goodeid fish. I. Ultrastructure of the internal ovarian epithelium, the maternal component.
    Lombardi J; Wourms JP
    J Morphol; 1985 Jun; 184(3):277-92. PubMed ID: 4057260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embryonic growth and trophotaenial development in goodeid fishes (Teleostei: Atheriniformes).
    Lombardi J; Wourms JP
    J Morphol; 1988 Aug; 197(2):193-208. PubMed ID: 29879799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composition of pH-sensitive triad in C-lobe of human serum transferrin. Comparison to sequences of ovotransferrin and lactoferrin provides insight into functional differences in iron release.
    Halbrooks PJ; Giannetti AM; Klein JS; Björkman PJ; Larouche JR; Smith VC; MacGillivray RT; Everse SJ; Mason AB
    Biochemistry; 2005 Nov; 44(47):15451-60. PubMed ID: 16300393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand binding and signalling pathways of PTH receptors in sea bream (Sparus auratus) enterocytes.
    Rotllant J; Guerreiro PM; Redruello B; Fernandes H; Apolónia L; Anjos L; Canario AV; Power DM
    Cell Tissue Res; 2006 Feb; 323(2):333-41. PubMed ID: 16189716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD15 in trophotaeniae of the viviparous goodeid fish Xenotoca eiseni (Cyprinodontiformes, Teleostei).
    Greven H; Passia D; Marani E
    Eur J Morphol; 1993 Dec; 31(4):267-73. PubMed ID: 7909681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of advanced glycation end products with A549 cells, a human pulmonary epithelial cell line, is mediated by a receptor distinct from the scavenger receptor family and RAGE.
    Nakano N; Fukuhara-Takaki K; Jono T; Nakajou K; Eto N; Horiuchi S; Takeya M; Nagai R
    J Biochem; 2006 May; 139(5):821-9. PubMed ID: 16751589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the mechanism of iron release from the C-lobe of human serum transferrin: mutational analysis of the role of a pH sensitive triad.
    Halbrooks PJ; He QY; Briggs SK; Everse SJ; Smith VC; MacGillivray RT; Mason AB
    Biochemistry; 2003 Apr; 42(13):3701-7. PubMed ID: 12667060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport mechanism of a new behaviorally highly potent adrenocorticotropic hormone (ACTH) analog, ebiratide, through the blood-brain barrier.
    Shimura T; Tabata S; Ohnishi T; Terasaki T; Tsuji A
    J Pharmacol Exp Ther; 1991 Aug; 258(2):459-65. PubMed ID: 1650827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo fluorescence imaging of the functional organization of trophotaenial placental cells of goodeid fishes.
    Kokkala I; Wourms JP
    J Morphol; 1994 Jan; 219(1):35-46. PubMed ID: 29865369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of novel 68Ga- and 18F-labeled GnRH-I analogues with high GnRHR-targeting efficiency.
    Schottelius M; Berger S; Poethko T; Schwaiger M; Wester HJ
    Bioconjug Chem; 2008 Jun; 19(6):1256-68. PubMed ID: 18510351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prenatal regression of the trophotaenial placenta in a viviparous fish, Xenotoca eiseni.
    Iida A; Nishimaki T; Sehara-Fujisawa A
    Sci Rep; 2015 Jan; 5():7855. PubMed ID: 25598151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of C-lobe ligands of human serum transferrin: insights into the mechanism of iron release.
    Mason AB; Halbrooks PJ; James NG; Connolly SA; Larouche JR; Smith VC; MacGillivray RT; Chasteen ND
    Biochemistry; 2005 Jun; 44(22):8013-21. PubMed ID: 15924420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD36 is not involved in scavenger receptor-mediated endocytic uptake of glycolaldehyde- and methylglyoxal-modified proteins by liver endothelial cells.
    Nakajou K; Horiuchi S; Sakai M; Hirata K; Tanaka M; Takeya M; Kai T; Otagiri M
    J Biochem; 2005 May; 137(5):607-16. PubMed ID: 15944414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple binding sites revealed by interaction of relaxin family peptides with native and chimeric relaxin family peptide receptors 1 and 2 (LGR7 and LGR8).
    Halls ML; Bond CP; Sudo S; Kumagai J; Ferraro T; Layfield S; Bathgate RA; Summers RJ
    J Pharmacol Exp Ther; 2005 May; 313(2):677-87. PubMed ID: 15649866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.