These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 1299367)
1. Cell interactions and mesodermal cell fates in the sea urchin embryo. Ettensohn CA Dev Suppl; 1992; ():43-51. PubMed ID: 1299367 [TBL] [Abstract][Full Text] [Related]
2. Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells. Ettensohn CA; Ruffins SW Development; 1993 Apr; 117(4):1275-85. PubMed ID: 8404530 [TBL] [Abstract][Full Text] [Related]
3. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network. Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786 [TBL] [Abstract][Full Text] [Related]
4. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo. Hodor PG; Ettensohn CA Dev Biol; 1998 Jul; 199(1):111-24. PubMed ID: 9676196 [TBL] [Abstract][Full Text] [Related]
5. A clonal analysis of secondary mesenchyme cell fates in the sea urchin embryo. Ruffins SW; Ettensohn CA Dev Biol; 1993 Nov; 160(1):285-8. PubMed ID: 8224545 [TBL] [Abstract][Full Text] [Related]
6. In situ screening for genes expressed preferentially in secondary mesenchyme cells of sea urchin embryos. Shoguchi E; Tokuoka M; Kominami T Dev Genes Evol; 2002 Oct; 212(9):407-18. PubMed ID: 12373586 [TBL] [Abstract][Full Text] [Related]
7. A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae. Yajima M Dev Biol; 2007 Jul; 307(2):272-81. PubMed ID: 17540361 [TBL] [Abstract][Full Text] [Related]
8. Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo. Fernandez-Serra M; Consales C; Livigni A; Arnone MI Dev Biol; 2004 Apr; 268(2):384-402. PubMed ID: 15063175 [TBL] [Abstract][Full Text] [Related]
9. Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos. Tan H; Ransick A; Wu H; Dobias S; Liu YH; Maxson R Dev Biol; 1998 Sep; 201(2):230-46. PubMed ID: 9740661 [TBL] [Abstract][Full Text] [Related]
10. Skeletogenesis by transfated secondary mesenchyme cells is dependent on extracellular matrix-ectoderm interactions in Paracentrotus lividus sea urchin embryos. Kiyomoto M; Zito F; Costa C; Poma V; Sciarrino S; Matranga V Dev Growth Differ; 2007 Dec; 49(9):731-41. PubMed ID: 17983367 [TBL] [Abstract][Full Text] [Related]
11. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746 [TBL] [Abstract][Full Text] [Related]
12. Cell interactions in the sea urchin embryo studied by fluorescence photoablation. Ettensohn CA Science; 1990 Jun; 248(4959):1115-8. PubMed ID: 2188366 [TBL] [Abstract][Full Text] [Related]
13. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton. Duloquin L; Lhomond G; Gache C Development; 2007 Jun; 134(12):2293-302. PubMed ID: 17507391 [TBL] [Abstract][Full Text] [Related]
14. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587 [TBL] [Abstract][Full Text] [Related]
15. Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains. Hodor PG; Illies MR; Broadley S; Ettensohn CA Dev Biol; 2000 Jun; 222(1):181-94. PubMed ID: 10885756 [TBL] [Abstract][Full Text] [Related]
16. Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos. Armstrong N; McClay DR Dev Biol; 1994 Apr; 162(2):329-38. PubMed ID: 8150198 [TBL] [Abstract][Full Text] [Related]
17. Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues. Malinda KM; Ettensohn CA Dev Biol; 1994 Aug; 164(2):562-78. PubMed ID: 8045352 [TBL] [Abstract][Full Text] [Related]
18. alphaSU2, an epithelial integrin that binds laminin in the sea urchin embryo. Hertzler PL; McClay DR Dev Biol; 1999 Mar; 207(1):1-13. PubMed ID: 10049560 [TBL] [Abstract][Full Text] [Related]
19. Evolutionary modification of mesenchyme cells in sand dollars in the transition from indirect to direct development. Yajima M Evol Dev; 2007; 9(3):257-66. PubMed ID: 17501749 [TBL] [Abstract][Full Text] [Related]
20. Signals from primary mesenchyme cells regulate endoderm differentiation in the sea urchin embryo. Hamada M; Kiyomoto M Dev Growth Differ; 2003 Aug; 45(4):339-50. PubMed ID: 12950275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]