These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 1299367)
21. Short-range cell-cell signals control ectodermal patterning in the oral region of the sea urchin embryo. Hardin J; Armstrong N Dev Biol; 1997 Feb; 182(1):134-49. PubMed ID: 9073456 [TBL] [Abstract][Full Text] [Related]
22. Cell lineage conversion in the sea urchin embryo. Ettensohn CA; McClay DR Dev Biol; 1988 Feb; 125(2):396-409. PubMed ID: 3338620 [TBL] [Abstract][Full Text] [Related]
23. Mesenchymal cell fusion in the sea urchin embryo. Hodor PG; Ettensohn CA Methods Mol Biol; 2008; 475():315-34. PubMed ID: 18979252 [TBL] [Abstract][Full Text] [Related]
24. Four-dimensional microscopic analysis of the filopodial behavior of primary mesenchyme cells during gastrulation in the sea urchin embryo. Malinda KM; Fisher GW; Ettensohn CA Dev Biol; 1995 Dec; 172(2):552-66. PubMed ID: 8612971 [TBL] [Abstract][Full Text] [Related]
25. A regulatory gene network that directs micromere specification in the sea urchin embryo. Oliveri P; Carrick DM; Davidson EH Dev Biol; 2002 Jun; 246(1):209-28. PubMed ID: 12027443 [TBL] [Abstract][Full Text] [Related]
26. Cells are added to the archenteron during and following secondary invagination in the sea urchin Lytechinus variegatus. Martins GG; Summers RG; Morrill JB Dev Biol; 1998 Jun; 198(2):330-42. PubMed ID: 9659937 [TBL] [Abstract][Full Text] [Related]
27. Evidence for a mesodermal embryonic regulator of the sea urchin CyIIa gene. Martin EL; Consales C; Davidson EH; Arnone MI Dev Biol; 2001 Aug; 236(1):46-63. PubMed ID: 11456443 [TBL] [Abstract][Full Text] [Related]
28. Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development. Croce J; Duloquin L; Lhomond G; McClay DR; Gache C Development; 2006 Feb; 133(3):547-57. PubMed ID: 16396908 [TBL] [Abstract][Full Text] [Related]
29. Suppression of muscle fate by cellular interaction is required for mesenchyme formation during ascidian embryogenesis. Kim GJ; Nishida H Dev Biol; 1999 Oct; 214(1):9-22. PubMed ID: 10491253 [TBL] [Abstract][Full Text] [Related]
30. Endoderm differentiation in vitro identifies a transitional period for endoderm ontogeny in the sea urchin embryo. Chen SW; Wessel GM Dev Biol; 1996 Apr; 175(1):57-65. PubMed ID: 8608869 [TBL] [Abstract][Full Text] [Related]
31. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo. Ransick A; Davidson EH Dev Biol; 1998 Mar; 195(1):38-48. PubMed ID: 9520322 [TBL] [Abstract][Full Text] [Related]
32. The development of dorsoventral and bilateral axial properties in sea urchin embryos. Henry JJ Semin Cell Dev Biol; 1998 Feb; 9(1):43-52. PubMed ID: 9572113 [TBL] [Abstract][Full Text] [Related]
33. The pregastrula establishment of gene expression pattern in Xenopus embryos: requirements for local cell interactions and for protein synthesis. Sokol SY Dev Biol; 1994 Dec; 166(2):782-8. PubMed ID: 7813795 [TBL] [Abstract][Full Text] [Related]
34. Expression patterns of three Par-related genes in sea urchin embryos. Shiomi K; Yamaguchi M Gene Expr Patterns; 2008 May; 8(5):323-30. PubMed ID: 18316248 [TBL] [Abstract][Full Text] [Related]
35. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus. Gross JM; McClay DR Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024 [TBL] [Abstract][Full Text] [Related]
36. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo. McClay DR; Peterson RE; Range RC; Winter-Vann AM; Ferkowicz MJ Development; 2000 Dec; 127(23):5113-22. PubMed ID: 11060237 [TBL] [Abstract][Full Text] [Related]
37. Cell-cell interactions regulate skeleton formation in the sea urchin embryo. Armstrong N; Hardin J; McClay DR Development; 1993 Nov; 119(3):833-40. PubMed ID: 8187642 [TBL] [Abstract][Full Text] [Related]
38. Regulative deployment of the skeletogenic gene regulatory network during sea urchin development. Sharma T; Ettensohn CA Development; 2011 Jun; 138(12):2581-90. PubMed ID: 21610034 [TBL] [Abstract][Full Text] [Related]
39. Mechanisms of evolutionary changes in timing, spatial expression, and mRNA processing in the msp130 gene in a direct-developing sea urchin, Heliocidaris erythrogramma. Klueg KM; Harkey MA; Raff RA Dev Biol; 1997 Feb; 182(1):121-33. PubMed ID: 9028919 [TBL] [Abstract][Full Text] [Related]
40. Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-beta. Topouzis S; Majesky MW Dev Biol; 1996 Sep; 178(2):430-45. PubMed ID: 8830742 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]