These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1299500)

  • 1. The effect of protein supplementation on lactate accumulation during submaximal and maximal exercise.
    Vukovich MD; Sharp RL; King DS; Kershishnik K
    Int J Sport Nutr; 1992 Dec; 2(4):307-16. PubMed ID: 1299500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of glycogen availability on power output and the metabolic response to repeated bouts of maximal, isokinetic exercise in man.
    Casey A; Short AH; Curtis S; Greenhaff PL
    Eur J Appl Physiol Occup Physiol; 1996; 72(3):249-55. PubMed ID: 8820894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle glycogen repletion during active postexercise recovery.
    Peters Futre EM; Noakes TD; Raine RI; Terblanche SE
    Am J Physiol; 1987 Sep; 253(3 Pt 1):E305-11. PubMed ID: 3307453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man.
    Bangsbo J; Graham TE; Kiens B; Saltin B
    J Physiol; 1992; 451():205-27. PubMed ID: 1403811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism and Whole-Body Fat Oxidation Following Postexercise Carbohydrate or Protein Intake.
    Andersson-Hall U; Pettersson S; Edin F; Pedersen A; Malmodin D; Madsen K
    Int J Sport Nutr Exerc Metab; 2018 Jan; 28(1):37-45. PubMed ID: 28871893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycogen, lactate, and alanine changes in muscle fiber types during graded exercise.
    Baldwin KM; Campbell PJ; Cooke DA
    J Appl Physiol Respir Environ Exerc Physiol; 1977 Aug; 43(2):288-91. PubMed ID: 893284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle glycolysis during submaximal exercise following acute beta-adrenergic blockade in man.
    Kaiser P; Tesch PA; Thorsson A; Karlsson J; Kaijser L
    Acta Physiol Scand; 1985 Mar; 123(3):285-91. PubMed ID: 2998155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of beta-adrenergic blockade on plasma lactate concentration during exercise at high altitude.
    Young AJ; Young PM; McCullough RE; Moore LG; Cymerman A; Reeves JT
    Eur J Appl Physiol Occup Physiol; 1991; 63(5):315-22. PubMed ID: 1685447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise.
    Bangsbo J; Graham T; Johansen L; Saltin B
    J Appl Physiol (1985); 1994 Oct; 77(4):1890-5. PubMed ID: 7836214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of creatine supplementation on performance during the repeated bouts of supramaximal exercise.
    Okudan N; Gokbel H
    J Sports Med Phys Fitness; 2005 Dec; 45(4):507-11. PubMed ID: 16446682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Acute Dietary Nitrate Consumption on Oxygen Consumption During Submaximal Exercise in Hypobaric Hypoxia.
    Carriker CR; Mermier CM; Van Dusseldorp TA; Johnson KE; Beltz NM; Vaughan RA; McCormick JJ; Cole NH; Witt CC; Gibson AL
    Int J Sport Nutr Exerc Metab; 2016 Aug; 26(4):315-22. PubMed ID: 26630309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of active and passive recovery on lactate removal and subsequent isokinetic muscle function.
    Bond V; Adams RG; Tearney RJ; Gresham K; Ruff W
    J Sports Med Phys Fitness; 1991 Sep; 31(3):357-61. PubMed ID: 1798305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single sodium pyruvate ingestion modifies blood acid-base status and post-exercise lactate concentration in humans.
    Olek RA; Kujach S; Wnuk D; Laskowski R
    Nutrients; 2014 May; 6(5):1981-92. PubMed ID: 24841105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of supramaximal exercise on blood glucose levels during a subsequent exercise.
    Roy JY; Bongbélé J; Cardin S; Brisson GR; Lavoie JM
    Eur J Appl Physiol Occup Physiol; 1991; 63(1):48-51. PubMed ID: 1915331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of beta-hydroxy beta-methylbutyrate on the onset of blood lactate accumulation and V(O)(2) peak in endurance-trained cyclists.
    Vukovich MD; Dreifort GD
    J Strength Cond Res; 2001 Nov; 15(4):491-7. PubMed ID: 11726262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparing effect of chronic high-altitude exposure on muscle glycogen utilization.
    Young AJ; Evans WJ; Cymerman A; Pandolf KB; Knapik JJ; Maher JT
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Apr; 52(4):857-62. PubMed ID: 7085419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effects of L-Citrulline on Blood-Lactate Removal Kinetics Following Maximal-Effort Exercise.
    Divito B; McLaughlin M; Jacobs I
    J Diet Suppl; 2022; 19(6):704-716. PubMed ID: 34013839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle glycogen utilization and the expression of relative exercise intensity.
    McLellan TM; Jacobs I
    Int J Sports Med; 1991 Feb; 12(1):21-6. PubMed ID: 2030054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of lactate consumption on exercise performance.
    Bryner RW; Hornsby WG; Chetlin R; Ullrich IH; Yeater RA
    J Sports Med Phys Fitness; 1998 Jun; 38(2):116-23. PubMed ID: 9763796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbohydrate supplementation spares muscle glycogen during variable-intensity exercise.
    Yaspelkis BB; Patterson JG; Anderla PA; Ding Z; Ivy JL
    J Appl Physiol (1985); 1993 Oct; 75(4):1477-85. PubMed ID: 8282593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.