These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 1299640)

  • 21. Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis.
    Chun HJ; Shin HS; Han CH; Lee SH
    Int J Oral Maxillofac Implants; 2006; 21(2):195-202. PubMed ID: 16634489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of implant length, diameter, and geometry on stress distribution: a finite element analysis.
    Anitua E; Tapia R; Luzuriaga F; Orive G
    Int J Periodontics Restorative Dent; 2010 Feb; 30(1):89-95. PubMed ID: 20224835
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis.
    Tada S; Stegaroiu R; Kitamura E; Miyakawa O; Kusakari H
    Int J Oral Maxillofac Implants; 2003; 18(3):357-68. PubMed ID: 12814310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of the cylinder implant thread height and width: a 3-dimensional finite element analysis.
    Kong L; Hu K; Li D; Song Y; Yang J; Wu Z; Liu B
    Int J Oral Maxillofac Implants; 2008; 23(1):65-74. PubMed ID: 18416414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two dental implants designed for immediate loading: a finite element analysis.
    Pierrisnard L; Hure G; Barquins M; Chappard D
    Int J Oral Maxillofac Implants; 2002; 17(3):353-62. PubMed ID: 12074450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of dental implant cross-sectional design on cortical bone structure using finite element analysis.
    Abu-Hammad O; Khraisat A; Dar-Odeh N; El-Maaytah M
    Clin Implant Dent Relat Res; 2007 Dec; 9(4):217-21. PubMed ID: 18031443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical effects of a maxillary implant in the augmented sinus: a three-dimensional finite element analysis.
    Huang HL; Fuh LJ; Ko CC; Hsu JT; Chen CC
    Int J Oral Maxillofac Implants; 2009; 24(3):455-62. PubMed ID: 19587867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonlinear contact analysis of preload in dental implant screws.
    Sakaguchi RL; Borgersen SE
    Int J Oral Maxillofac Implants; 1995; 10(3):295-302. PubMed ID: 7615325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of implant collar design on stress and strain distribution in the crestal compact bone: a three-dimensional finite element analysis.
    Shen WL; Chen CS; Hsu ML
    Int J Oral Maxillofac Implants; 2010; 25(5):901-10. PubMed ID: 20862403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of vertical interarch space and abutment height on stress distributions: a 3D finite element analysis.
    Naveau A; Renault P; Pierrisnard L
    Eur J Prosthodont Restor Dent; 2009 Jun; 17(2):90-4. PubMed ID: 19645311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of a thin HA coating on the stress/strain distribution in bone around dental implants using three-dimensional finite element analysis.
    Aoki H; Ozeki K; Ohtani Y; Fukui Y; Asaoka T
    Biomed Mater Eng; 2006; 16(3):157-69. PubMed ID: 16518015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of off-axis loading of an anterior maxillary implant: a 3-dimensional finite element analysis.
    Hsu ML; Chen FC; Kao HC; Cheng CK
    Int J Oral Maxillofac Implants; 2007; 22(2):301-9. PubMed ID: 17465356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An in vitro load evaluation of a conical implant system with 2 abutment designs and 3 different retaining-screw alloys.
    Erneklint C; Odman P; Ortengren U; Karlsson S
    Int J Oral Maxillofac Implants; 2006; 21(5):733-7. PubMed ID: 17066634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Threaded versus porous-surfaced implants as anchorage units for orthodontic treatment: three-dimensional finite element analysis of peri-implant bone tissue stresses.
    Pilliar RM; Sagals G; Meguid SA; Oyonarte R; Deporter DA
    Int J Oral Maxillofac Implants; 2006; 21(6):879-89. PubMed ID: 17190297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of finite element analysis to model bone-implant contact with basal implants.
    Ihde S; Goldmann T; Himmlova L; Aleksic Z
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2008 Jul; 106(1):39-48. PubMed ID: 18439855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative stress analyses of fixed free-end osseointegrated prostheses using the finite element method.
    Melo C; Matsushita Y; Koyano K; Hirowatari H; Suetsugu T
    J Oral Implantol; 1995; 21(4):290-4. PubMed ID: 8699521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tilting of splinted implants for improved prosthodontic support: a two-dimensional finite element analysis.
    Zampelis A; Rangert B; Heijl L
    J Prosthet Dent; 2007 Jun; 97(6 Suppl):S35-43. PubMed ID: 17618932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined influence of implant diameter and alveolar ridge width on crestal bone stress: a quantitative approach.
    Yu W; Jang YJ; Kyung HM
    Int J Oral Maxillofac Implants; 2009; 24(1):88-95. PubMed ID: 19344030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A method of selecting the best implant prosthesis design option using three-dimensional finite element analysis.
    Kregzde M
    Int J Oral Maxillofac Implants; 1993; 8(6):662-73. PubMed ID: 8181829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of splinted prosthesis supported a wide implant or two implants: a three-dimensional finite element analysis.
    Huang HL; Huang JS; Ko CC; Hsu JT; Chang CH; Chen MY
    Clin Oral Implants Res; 2005 Aug; 16(4):466-72. PubMed ID: 16117772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.