These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 130009)
1. The effect of calcium and phosphate on the biphasic calcium uptake by the sarcoplasmic reticulum. Mermier P; Hasselbach W Z Naturforsch C Biosci; 1975; 30(6):777-80. PubMed ID: 130009 [TBL] [Abstract][Full Text] [Related]
2. The biphasic Ca2+-uptake by the fragmented sarcoplasmic reticulum. Mermier P; Hasselbach W Z Naturforsch C Biosci; 1975; 30(5):593-9. PubMed ID: 56096 [TBL] [Abstract][Full Text] [Related]
3. Comparison between strontium and calcium uptake by the fragmented sarcoplasmic reticulum. Mermier P; Hasselbach W Eur J Biochem; 1976 Oct; 69(1):79-86. PubMed ID: 136346 [TBL] [Abstract][Full Text] [Related]
4. The biphasic active transport of calcium by the fragmented sarcoplasmic reticulum as revealed by the flow dialysis method. Mermier P; Hasselbach W Eur J Biochem; 1976 May; 64(2):613-20. PubMed ID: 819267 [TBL] [Abstract][Full Text] [Related]
5. Formation of magnesium-phosphoenzyme and magnesium-calcium-phosphoenzyme in the phosphorylation of adenosine triphosphatase by orthophosphate in sarcoplasmic reticulum. Models of a reaction sequence. Suko J; Plank B; Preis P; Kolassa N; Hellmann G; Conca W Eur J Biochem; 1981 Oct; 119(2):225-36. PubMed ID: 6458492 [TBL] [Abstract][Full Text] [Related]
6. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase. Suko J; Hasselbach W Eur J Biochem; 1976 Apr; 64(1):123-30. PubMed ID: 6267 [TBL] [Abstract][Full Text] [Related]
7. Effect of heptane treatment on the response of sarcoplasmic reticulum preparations to phosphate. Horgan DJ Aust J Biol Sci; 1976 Dec; 29(5-6):459-65. PubMed ID: 139880 [TBL] [Abstract][Full Text] [Related]
8. Aspects of the mechanism of action of local anesthetics on the sarcoplasmic reticulum of skeletal muscle. Suko J; Winkler F; Scharinger B; Hellmann G Biochim Biophys Acta; 1976 Sep; 443(3):571-86. PubMed ID: 134747 [TBL] [Abstract][Full Text] [Related]
9. The initial phase of Ca2+-uptake and ATPase activity of sarcoplasmic reticulum vesicles. Kurzmack M; Inesi G FEBS Lett; 1977 Feb; 74(1):35-7. PubMed ID: 138599 [No Abstract] [Full Text] [Related]
10. Simple spectrophotometric estimation of ATPase and calcium uptake activities of sarcoplasmic reticulum preparations. Horgan DJ; Tume RK; Newbold RP Anal Biochem; 1972 Jul; 48(1):147-52. PubMed ID: 4261203 [No Abstract] [Full Text] [Related]
11. Effects of inorganic phosphate and ADP on calcium handling by the sarcoplasmic reticulum in rat skinned cardiac muscles. Xiang JZ; Kentish JC Cardiovasc Res; 1995 Mar; 29(3):391-400. PubMed ID: 7781013 [TBL] [Abstract][Full Text] [Related]
12. Ionized and bound calcium inside isolated sarcoplasmic reticulum of skeletal muscle and its significance in phosphorylation of adenosine triphosphatase by orthophosphate. Prager R; Punzengruber C; Kolassa N; Winkler F; Suko J Eur J Biochem; 1979 Jun; 97(1):239-50. PubMed ID: 157875 [TBL] [Abstract][Full Text] [Related]
13. [Functional properties of fragments of the sarcoplasmic reticulum of the fast and slow muscles of Rana ridibunda frogs]. Esyrev OV; Uspanova ZhK; Kniazevskaia IB Zh Evol Biokhim Fiziol; 1976; 12(4):309-13. PubMed ID: 136158 [TBL] [Abstract][Full Text] [Related]
14. Effect of cross-reinnervation on physiological parameters and on properties of myosin and sarcoplasmic reticulum of fast and slow muscles of the rabbit. Sréter FA; Luff AR; Gergely J J Gen Physiol; 1975 Dec; 66(6):811-21. PubMed ID: 461 [TBL] [Abstract][Full Text] [Related]
15. The modulation of the calcium transport by skeletal muscle sarcoplasmic reticulum in the hibernating European hamster. Agostini B; De Martino L; Soltau B; Hasselbach W Z Naturforsch C J Biosci; 1991; 46(11-12):1109-26. PubMed ID: 1840124 [TBL] [Abstract][Full Text] [Related]
16. Stimulation of Ca2+ efflux from sarcoplasmic reticulum by preincubation with ATP and inorganic phosphate. Shoshan-Barmatz V Biochem J; 1987 Nov; 247(3):497-504. PubMed ID: 2962569 [TBL] [Abstract][Full Text] [Related]
17. ATPase activities, Ca2+ transport and phosphoprotein formation in sarcoplasmic reticulum subfractions of fast and slow rabbit muscles. Heilmann C; Brdiczka D; Nickel E; Pette D Eur J Biochem; 1977 Dec; 81(2):211-22. PubMed ID: 145941 [TBL] [Abstract][Full Text] [Related]
18. Interaction of magnesium and inorganic phosphate with calcium-deprived sarcoplasmic reticulum adenosinetriphosphatase as reflected by organic solvent induced perturbation. Champeil P; Guillain F; Vénien C; Gingold MP Biochemistry; 1985 Jan; 24(1):69-81. PubMed ID: 3158341 [TBL] [Abstract][Full Text] [Related]
19. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum? Smith GA; Vandenberg JI; Freestone NS; Dixon HB Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Ca2+ uptake and release by vesicles of skeletal-muscle sarcoplasmic reticulum. McWhirter JM; Gould GW; East JM; Lee AG Biochem J; 1987 Aug; 245(3):731-8. PubMed ID: 3663188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]