These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1300113)

  • 1. An approach to determining the kinematic parameters of biomechanical systems with applications to the wrist.
    Pittman P; Colbaugh R; Glass K; Rowen B
    Proc Inst Mech Eng H; 1992; 206(4):213-23. PubMed ID: 1300113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kinematic model of the wrist based on maximization of joint contact area.
    Sirkett DM; Mullineux G; Giddins GE; Miles AW
    Proc Inst Mech Eng H; 2004; 218(5):349-59. PubMed ID: 15533000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive technique for measuring in vivo three-dimensional carpal bone kinematics.
    Crisco JJ; McGovern RD; Wolfe SW
    J Orthop Res; 1999 Jan; 17(1):96-100. PubMed ID: 10073653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating anatomical wrist joint motion with a robotic exoskeleton.
    Rose CG; Kann CK; Deshpande AD; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1437-1442. PubMed ID: 28814022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A technique for kinematic modeling of anatomical joints.
    Sommer HJ; Miller NR
    J Biomech Eng; 1980 Nov; 102(4):311-7. PubMed ID: 6965194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pisiform kinematics in vivo.
    Moojen TM; Snel JG; Ritt MJ; Venema HW; den Heeten GJ; Bos KE
    J Hand Surg Am; 2001 Sep; 26(5):901-7. PubMed ID: 11561244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An adaptive-gain complementary filter for real-time human motion tracking with MARG sensors in free-living environments.
    Tian Y; Wei H; Tan J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):254-64. PubMed ID: 22801527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structurally decoupled mechanism for measuring wrist torque in three degrees of freedom.
    Pan L; Yang Z; Zhang D
    Rev Sci Instrum; 2015 Oct; 86(10):104301. PubMed ID: 26520970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an in-vivo method of wrist joint motion analysis.
    Leonard L; Sirkett D; Mullineux G; Giddins GE; Miles AW
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):166-71. PubMed ID: 15621321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new system for the measurement of displacements of the human body with widespread applications in human movement studies.
    Rowe PJ; Crosbie J; Fowler V; Durward B; Baer G
    Med Eng Phys; 1999 May; 21(4):265-75. PubMed ID: 10514045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studying primate carpal kinematics in three dimensions using a computed-tomography-based markerless registration method.
    Orr CM; Leventhal EL; Chivers SF; Marzke MW; Wolfe SW; Crisco JJ
    Anat Rec (Hoboken); 2010 Apr; 293(4):692-709. PubMed ID: 20235325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A technique for quantifying wrist motion using four-dimensional computed tomography: approach and validation.
    Zhao K; Breighner R; Holmes D; Leng S; McCollough C; An KN
    J Biomech Eng; 2015 Jul; 137(7):0745011-5. PubMed ID: 25901447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematics of the midcarpal and radiocarpal joint in flexion and extension: an in vitro study.
    Kaufmann RA; Pfaeffle HJ; Blankenhorn BD; Stabile K; Robertson D; Goitz R
    J Hand Surg Am; 2006 Sep; 31(7):1142-8. PubMed ID: 16945717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical operation of a biaxial goniometer at the wrist joint.
    Buchholz B; Wellman H
    Hum Factors; 1997 Mar; 39(1):119-29. PubMed ID: 9302884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo three-dimensional kinematics of the midcarpal joint of the wrist.
    Moritomo H; Murase T; Goto A; Oka K; Sugamoto K; Yoshikawa H
    J Bone Joint Surg Am; 2006 Mar; 88(3):611-21. PubMed ID: 16510829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and validation of an electrogoniometric wrist alignment device.
    Ugbolue UC; Nicol AC; Maclean J
    Proc Inst Mech Eng H; 2008 Jul; 222(5):637-46. PubMed ID: 18756683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic behavior of the human wrist joint: a roentgen-stereophotogrammetric analysis.
    de Lange A; Kauer JM; Huiskes R
    J Orthop Res; 1985; 3(1):56-64. PubMed ID: 3981296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A solidification procedure to facilitate kinematic analyses based on video system data.
    Chèze L; Fregly BJ; Dimnet J
    J Biomech; 1995 Jul; 28(7):879-84. PubMed ID: 7657687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereoradiogrammetric technique for estimating alignment of the joints in the hand and wrist.
    Runciman RJ; Bryant JT; Small CF; Fujita N; Cooke TD
    J Biomed Eng; 1993 Mar; 15(2):99-105. PubMed ID: 8459704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite centroid and helical axis estimation from noisy landmark measurements in the study of human joint kinematics.
    Woltring HJ; Huiskes R; de Lange A; Veldpaus FE
    J Biomech; 1985; 18(5):379-89. PubMed ID: 4008508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.