These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 13002383)

  • 21. Three antifungal polypeptides from Bacillus subtilis.
    Burachik M; Leardini NA; Paladini AC
    Experientia; 1964 Sep; 20(9):504-5. PubMed ID: 4955165
    [No Abstract]   [Full Text] [Related]  

  • 22. Cellular destruction, phytohormones and growth modulating enzymes production by Bacillus subtilis strain BC8 impacted by fungicides.
    Shahid M; Khan MS
    Pestic Biochem Physiol; 2018 Jul; 149():8-19. PubMed ID: 30033020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Metabolism of glutamic acid by Bacillus subtilis].
    WIAME JM; STORCK R
    Biochim Biophys Acta; 1953 Feb; 10(2):268-79. PubMed ID: 13051403
    [No Abstract]   [Full Text] [Related]  

  • 24. [EFFECT OF SALINE COMPONENTS OF THE MEDIUM ON THE ACTIVITY OF AMYLASE, CATALASE AND PEROXIDASE IN BAC. SUBTILIS AND BAC. MESENTERICUS].
    KOLCHINSKAIA ID; MEDVINSKAIA LIu; TINIANOVA NZ
    Mikrobiol Zh; 1964; 26():29-33. PubMed ID: 14348364
    [No Abstract]   [Full Text] [Related]  

  • 25. [Participation of the tricarboxylic acid cycle in nitrogen metabolism by Bacillus subtilis].
    WIAME JM; STORCK R; BOURGEOIS S
    Arch Int Physiol; 1953 Jun; 61(3):431-2. PubMed ID: 13093087
    [No Abstract]   [Full Text] [Related]  

  • 26. Peptides from mycobacillin--negative sporeformer mutants of Bacillus subtilis.
    Ray B; Bose SK
    Indian J Biochem Biophys; 1976 Jun; 13(2):187-8. PubMed ID: 827491
    [No Abstract]   [Full Text] [Related]  

  • 27. Purification and characterization of a potential antifungal protein from Bacillus subtilis E1R-J against Valsa mali.
    Wang NN; Yan X; Gao XN; Niu HJ; Kang ZS; Huang LL
    World J Microbiol Biotechnol; 2016 Apr; 32(4):63. PubMed ID: 26925625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trace element requirements of Bacillus subtilis for mycobacillin formation.
    MAJUMDAR SK; BOSE SK
    J Bacteriol; 1960 Apr; 79(4):564-5. PubMed ID: 14420118
    [No Abstract]   [Full Text] [Related]  

  • 29. Plasmid transformation in Bacillus subtilis NB22, an antifungal-antibiotic iturin producer.
    Matsuno Y; Hiraoka H; Ano T; Shoda M
    FEMS Microbiol Lett; 1990 Jan; 55(1-2):227-9. PubMed ID: 2109723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The oxidation of glycerin studied by means of Bacillus subtilis variants].
    WIAME JM; BOURGEOIS S; LAMBION R
    Arch Int Physiol; 1954 Feb; 62(1):155-6. PubMed ID: 13149258
    [No Abstract]   [Full Text] [Related]  

  • 31. Basic analysis of Bacillus subtilis NB22 and its application to biological control.
    Shoda M; Ano T
    Bioprocess Technol; 1994; 19():641-64. PubMed ID: 7764779
    [No Abstract]   [Full Text] [Related]  

  • 32. [CONTRIBUTION TO THE PATHOGENESIS OF AEROBIC SPOROGENOUS BACTERIUM (BACILLUS) INFECTION IN MICE].
    NIKODEMUSZ I; GONDA G
    Kiserl Orvostud; 1963 Dec; 15():629-32. PubMed ID: 14119570
    [No Abstract]   [Full Text] [Related]  

  • 33. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease.
    Fan H; Ru J; Zhang Y; Wang Q; Li Y
    Microbiol Res; 2017 Jun; 199():89-97. PubMed ID: 28454713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [CONTRIBUTION TO THE ANIMAL PATHOGENICITY OF AEROBIC SPORE-FORMING BACILLI].
    NIKODEMUSZ I; GONDA G
    Zentralbl Bakteriol Orig; 1963 Jul; 189():298-307. PubMed ID: 14049323
    [No Abstract]   [Full Text] [Related]  

  • 35. Identification and Characterization of Lipopeptides from Bacillus subtilis B1 Against Sapstain Fungus of Rubberwood Through MALDI-TOF-MS and RT-PCR.
    Sajitha KL; Dev SA; Maria Florence EJ
    Curr Microbiol; 2016 Jul; 73(1):46-53. PubMed ID: 27004481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease.
    Guo Q; Dong W; Li S; Lu X; Wang P; Zhang X; Wang Y; Ma P
    Microbiol Res; 2014; 169(7-8):533-40. PubMed ID: 24380713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of the antifungal ability of Bacillus subtilis strain PY-1 in vitro and identification of its antifungal substance (iturin A).
    Gong M; Wang JD; Zhang J; Yang H; Lu XF; Pei Y; Cheng JQ
    Acta Biochim Biophys Sin (Shanghai); 2006 Apr; 38(4):233-40. PubMed ID: 16604262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds.
    Torres MJ; Brandan CP; Petroselli G; Erra-Balsells R; Audisio MC
    Microbiol Res; 2016 Jan; 182():31-9. PubMed ID: 26686611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Enzymatic activity of certain sporogenic aerobic bacteria selected from natural sources. I. Proteolytic activity of bouillon cultures of Bac. Subtilis, Bac. mesentericus, Bac. cereus].
    MEDVYNS'KA LIu; KOLCHYNS'KA ID; LYSOHOR AP
    Mikrobiol Zh; 1960; 22(5)():6-13. PubMed ID: 13768889
    [No Abstract]   [Full Text] [Related]  

  • 40. Studies on the antifungal antibiotics: bacillomycin D and bacillomycin D methylester.
    Tenoux I; Besson F; Michel G
    Microbios; 1991; 67(272-273):187-93. PubMed ID: 1779878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.