These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1301027)

  • 1. Effect of constituents of burned skin and in vivo skin burning on the respiratory activity of rat liver mitochondria.
    Feifel H; Bruchelt G; Schmidt K
    Burns; 1992 Aug; 18(4):308-12. PubMed ID: 1301027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional changes of the NADH respiratory chain in rat-liver mitochondria and the content changes of high-energy phosphate groups in rat liver and heart during the early phase of burn injury.
    Wang XM; Chen KM; Shi Y; Shi HP
    Burns; 1990 Oct; 16(5):377-80. PubMed ID: 2275769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of thermal injury on mitochondrial oxygen consumption and the glycerol phosphate shuttle.
    Hu H; Greif RL; Goodwin CW
    Metabolism; 1994 Jul; 43(7):913-6. PubMed ID: 8028518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Burn Trauma Acutely Increases the Respiratory Capacity and Function of Liver Mitochondria.
    Bohanon FJ; Nunez Lopez O; Herndon DN; Wang X; Bhattarai N; Ayadi AE; Prasai A; Jay JW; Rojas-Khalil Y; Toliver-Kinsky TE; Finnerty CC; Radhakrishnan RS; Porter C
    Shock; 2018 Apr; 49(4):466-473. PubMed ID: 28682939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional changes in rat-liver mitochondria during the early phase of burn injury.
    Wang XM; Chen KM; Wang Y; Shi SP
    Burns Incl Therm Inj; 1986 Oct; 12(7):461-4. PubMed ID: 3779466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium induced the damage of myocardial mitochondrial respiratory function in the early stage after severe burns.
    Liang WY; Tang LX; Yang ZC; Huang YS
    Burns; 2002 Mar; 28(2):143-6. PubMed ID: 11900937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria-toxic activity in burned human skin: relation to severity of burn and period after burn.
    Aoyama H; Suzuki K; Izawa Y; Kobashashi M; Ozawa T
    Burns Incl Therm Inj; 1982 Sep; 9(1):13-6. PubMed ID: 7172070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of enteral supplementation with glutamine on mitochondria respiratory function of intestinal epithelium in burned rats].
    Peng X; Chen RC; Wang P; You ZY; Wang SL
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2004 Feb; 16(2):93-6. PubMed ID: 14764223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liver and skeletal muscle mitochondrial function following burn injury.
    Aprille JR; Hom JA; Rulfs J
    J Trauma; 1977 Apr; 17(4):279-88. PubMed ID: 192906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased survival rates by topical treatment of burns with cerium nitrate.
    Kistler D; Hafemann B; Schoenenberger GA; Hettich R
    Eur Surg Res; 1990; 22(5):283-90. PubMed ID: 2079091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of varying burn sizes and ambient temperature on the hypermetabolic rate in thermally injured rats.
    Barrow RE; Meyer NA; Jeschke MG
    J Surg Res; 2001 Aug; 99(2):253-7. PubMed ID: 11469894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impairment of the mitochondrial respiratory chain activity in diethylnitrosamine-induced rat hepatomas: possible involvement of oxygen free radicals.
    Boitier E; Merad-Boudia M; Guguen-Guillouzo C; Defer N; Ceballos-Picot I; Leroux JP; Marsac C
    Cancer Res; 1995 Jul; 55(14):3028-35. PubMed ID: 7606723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study of toxin from burned skin].
    Movshev BE; Petrov VN
    Vopr Med Khim; 1975; 21(6):633-7. PubMed ID: 1216777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Inhibitory effect of uremic fluorescent substances on the cellular energy generation].
    Konobu K; Tomoko ; Matsumoto ; Yamamoto E; Sawanishi K
    Nihon Jinzo Gakkai Shi; 1989 Jan; 31(1):105-9. PubMed ID: 2746995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoregulation during exercise in severely burned children.
    McEntire SJ; Herndon DN; Sanford AP; Suman OE
    Pediatr Rehabil; 2006; 9(1):57-64. PubMed ID: 16352508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of thermal injuries on electron transport chains of rat myocardial mitochondria].
    Wang Z; Cai B; Zhou W
    Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi; 1999 Jan; 15(1):56-8. PubMed ID: 11263320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The present status of research in burn toxins.
    Kremer B; Allgöwer M; Graf M; Schmidt KH; Schoelmerich J; Schoenenberger GA
    Intensive Care Med; 1981 Jan; 7(2):77-87. PubMed ID: 7204743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of mitochondrial respiratory function by an organic solvent extractable component from an extract of burn eschar.
    Chen ZR; Xiong Y; Wang SB; Dong Y
    Burns; 1991 Aug; 17(4):282-7. PubMed ID: 1834077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatic mitochondrial respiration and transport of reducing equivalents in rats fed an energy dense diet.
    Iossa S; Mollica MP; Lionetti L; Barletta A; Liverini G
    Int J Obes Relat Metab Disord; 1995 Aug; 19(8):539-43. PubMed ID: 7489023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.