BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1301787)

  • 1. In vivo MRI and fluorescence studies on the ocular lens.
    Lerman S
    Lens Eye Toxic Res; 1992; 9(3-4):293-307. PubMed ID: 1301787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical methods to monitor lens aging and pre-cataractous changes in vivo.
    Lerman S
    Lens Eye Toxic Res; 1990; 7(3-4):243-9. PubMed ID: 2100162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR & fluorescence studies on human and animal lenses.
    Lerman S
    Lens Eye Toxic Res; 1991; 8(2-3):121-54. PubMed ID: 1911633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitation of galactosemic cataracts in dogs using magnetization transfer contrast-enhanced magnetic resonance imaging.
    Lizak MJ; Mori K; Ceckler TL; Balaban RS; Kador PF
    Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2219-27. PubMed ID: 8843908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses.
    Bessems GJ; Keizer E; Wollensak J; Hoenders HJ
    Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1157-63. PubMed ID: 3596993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo dynamic light scattering characterization of a human lens: cataract index.
    Dhadwal HS; Wittpenn J
    Curr Eye Res; 2000 Jun; 20(6):502-10. PubMed ID: 10980663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification.
    Sanderson J; Marcantonio JM; Duncan G
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A
    Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo determination of the anisotropic diffusion of water and the T1 and T2 times in the rabbit lens by high-resolution magnetic resonance imaging.
    Wu JC; Wong EC; Arrindell EL; Simons KB; Jesmanowicz A; Hyde JS
    Invest Ophthalmol Vis Sci; 1993 Jun; 34(7):2151-8. PubMed ID: 8505198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR analyses of the cold cataract. II. Studies on protein solutions.
    Lerman S; Megaw JM; Gardner K; Ashley D; Long RC; Goldstein JH
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):99-105. PubMed ID: 6826319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of short-range protein interactions in lens opacifications.
    Ponce A; Sorensen C; Takemoto L
    Mol Vis; 2006 Aug; 12():879-84. PubMed ID: 16917488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and repair of cataract induced by ultraviolet radiation.
    Michael R
    Ophthalmic Res; 2000; 32 Suppl 1():ii-iii; 1-44. PubMed ID: 10817682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [In vivo autofluorescence. Measurements of human crystalline lenses with cataract and normal findings after excitation with monochromatic light].
    Strobel J; Rödinger ML; Reck B; Lohmann W; Wickert H
    Ophthalmologe; 1992 Aug; 89(4):278-82. PubMed ID: 1304199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear magnetic resonance microscopic ocular imaging for the detection of early-stage cataract.
    Ahn CB; Anderson JA; Juh SC; Kim I; Garner WH; Cho ZH
    Invest Ophthalmol Vis Sci; 1989 Jul; 30(7):1612-7. PubMed ID: 2745002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free and bound water in normal and cataractous human lenses.
    Heys KR; Friedrich MG; Truscott RJ
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):1991-7. PubMed ID: 18436831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human lens phospholipid changes with age and cataract.
    Huang L; Grami V; Marrero Y; Tang D; Yappert MC; Rasi V; Borchman D
    Invest Ophthalmol Vis Sci; 2005 May; 46(5):1682-9. PubMed ID: 15851569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.