These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 1301787)
1. In vivo MRI and fluorescence studies on the ocular lens. Lerman S Lens Eye Toxic Res; 1992; 9(3-4):293-307. PubMed ID: 1301787 [TBL] [Abstract][Full Text] [Related]
2. Biophysical methods to monitor lens aging and pre-cataractous changes in vivo. Lerman S Lens Eye Toxic Res; 1990; 7(3-4):243-9. PubMed ID: 2100162 [TBL] [Abstract][Full Text] [Related]
3. NMR & fluorescence studies on human and animal lenses. Lerman S Lens Eye Toxic Res; 1991; 8(2-3):121-54. PubMed ID: 1911633 [TBL] [Abstract][Full Text] [Related]
4. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
5. Quantitation of galactosemic cataracts in dogs using magnetization transfer contrast-enhanced magnetic resonance imaging. Lizak MJ; Mori K; Ceckler TL; Balaban RS; Kador PF Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2219-27. PubMed ID: 8843908 [TBL] [Abstract][Full Text] [Related]
6. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses. Bessems GJ; Keizer E; Wollensak J; Hoenders HJ Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1157-63. PubMed ID: 3596993 [TBL] [Abstract][Full Text] [Related]
7. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
8. In vivo dynamic light scattering characterization of a human lens: cataract index. Dhadwal HS; Wittpenn J Curr Eye Res; 2000 Jun; 20(6):502-10. PubMed ID: 10980663 [TBL] [Abstract][Full Text] [Related]
9. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification. Sanderson J; Marcantonio JM; Duncan G Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870 [TBL] [Abstract][Full Text] [Related]
10. Characterization of water-insoluble proteins in normal and cataractous human lens. Kamei A Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364 [TBL] [Abstract][Full Text] [Related]
11. In vivo determination of the anisotropic diffusion of water and the T1 and T2 times in the rabbit lens by high-resolution magnetic resonance imaging. Wu JC; Wong EC; Arrindell EL; Simons KB; Jesmanowicz A; Hyde JS Invest Ophthalmol Vis Sci; 1993 Jun; 34(7):2151-8. PubMed ID: 8505198 [TBL] [Abstract][Full Text] [Related]
12. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Srivastava K; Chaves JM; Srivastava OP; Kirk M Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688 [TBL] [Abstract][Full Text] [Related]
13. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090 [TBL] [Abstract][Full Text] [Related]
14. NMR analyses of the cold cataract. II. Studies on protein solutions. Lerman S; Megaw JM; Gardner K; Ashley D; Long RC; Goldstein JH Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):99-105. PubMed ID: 6826319 [TBL] [Abstract][Full Text] [Related]
15. Role of short-range protein interactions in lens opacifications. Ponce A; Sorensen C; Takemoto L Mol Vis; 2006 Aug; 12():879-84. PubMed ID: 16917488 [TBL] [Abstract][Full Text] [Related]
16. Development and repair of cataract induced by ultraviolet radiation. Michael R Ophthalmic Res; 2000; 32 Suppl 1():ii-iii; 1-44. PubMed ID: 10817682 [TBL] [Abstract][Full Text] [Related]
17. [In vivo autofluorescence. Measurements of human crystalline lenses with cataract and normal findings after excitation with monochromatic light]. Strobel J; Rödinger ML; Reck B; Lohmann W; Wickert H Ophthalmologe; 1992 Aug; 89(4):278-82. PubMed ID: 1304199 [TBL] [Abstract][Full Text] [Related]
18. Nuclear magnetic resonance microscopic ocular imaging for the detection of early-stage cataract. Ahn CB; Anderson JA; Juh SC; Kim I; Garner WH; Cho ZH Invest Ophthalmol Vis Sci; 1989 Jul; 30(7):1612-7. PubMed ID: 2745002 [TBL] [Abstract][Full Text] [Related]
19. Free and bound water in normal and cataractous human lenses. Heys KR; Friedrich MG; Truscott RJ Invest Ophthalmol Vis Sci; 2008 May; 49(5):1991-7. PubMed ID: 18436831 [TBL] [Abstract][Full Text] [Related]
20. Human lens phospholipid changes with age and cataract. Huang L; Grami V; Marrero Y; Tang D; Yappert MC; Rasi V; Borchman D Invest Ophthalmol Vis Sci; 2005 May; 46(5):1682-9. PubMed ID: 15851569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]