These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 1301787)
21. Freezable and non-freezable water content of cataractous human lenses. Bettelheim FA; Ali S; White O; Chylack LT Invest Ophthalmol Vis Sci; 1986 Jan; 27(1):122-5. PubMed ID: 3941033 [TBL] [Abstract][Full Text] [Related]
22. Quantitation of membrane-associated crystallins from aging and cataractous human lenses. Takehana M; Takemoto L Invest Ophthalmol Vis Sci; 1987 May; 28(5):780-4. PubMed ID: 3570688 [TBL] [Abstract][Full Text] [Related]
23. Methylglyoxal-derived modifications in lens aging and cataract formation. Shamsi FA; Lin K; Sady C; Nagaraj RH Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2355-64. PubMed ID: 9804144 [TBL] [Abstract][Full Text] [Related]
24. Do changes in the hydration of the diabetic human lens precede cataract formation? Bettelheim FA; Li L; Zeng FF Res Commun Mol Pathol Pharmacol; 1998 Oct; 102(1):3-14. PubMed ID: 9920342 [TBL] [Abstract][Full Text] [Related]
25. 13C NMR studies of protein motional dynamics in bovine, human, rat, and chicken ocular lenses. Rydzewski JM; Wang SX; Stevens A; Serdahl C; Schleich T Exp Eye Res; 1993 Mar; 56(3):305-16. PubMed ID: 8472786 [TBL] [Abstract][Full Text] [Related]
26. Quantitation of high molecular weight protein aggregates in opaque and transparent parts from the same human cataractous lens. Kodama T; Wolfe J; Chylack L; Smith J; Takemoto L Jpn J Ophthalmol; 1989; 33(1):114-9. PubMed ID: 2733253 [TBL] [Abstract][Full Text] [Related]
27. High molecular weight aggregate from cataractous and normal human lenses: characterization by antisera to lens crystallins. Kodama T; Wong R; Takemoto L Jpn J Ophthalmol; 1988; 32(2):159-65. PubMed ID: 3184549 [TBL] [Abstract][Full Text] [Related]
28. High galactose levels in vitro and in vivo impair ascorbate regeneration and increase ascorbate-mediated glycation in cultured rat lens. Saxena P; Saxena AK; Monnier VM Exp Eye Res; 1996 Nov; 63(5):535-45. PubMed ID: 8994357 [TBL] [Abstract][Full Text] [Related]
29. [Detection of early cataract changes in the crystalline lens by using in vivo spectrophotometry of the eye]. Prost M; Gerkowicz K; Katski W; Gerkowicz M; Jedrzejewski D Klin Oczna; 1992; 94(5-6):123-5. PubMed ID: 1453666 [TBL] [Abstract][Full Text] [Related]
30. Laser light scattering spectroscopy of in vivo human lenses. Weiss JN; Rand LI; Gleason RE; Soeldner JS Invest Ophthalmol Vis Sci; 1984 May; 25(5):594-8. PubMed ID: 6715134 [TBL] [Abstract][Full Text] [Related]
31. Phototoxicity involving the ocular lens: in vivo and in vitro studies. Lerman S; Mandal K; Misra B; Schechter A; Schenck J Photochem Photobiol; 1991 Feb; 53(2):243-7. PubMed ID: 2011629 [TBL] [Abstract][Full Text] [Related]
32. NMR pulse relaxation studies on the normal aging and cataractous lens. Lerman S; Moran M Exp Eye Res; 1989 Mar; 48(3):451-9. PubMed ID: 2924825 [TBL] [Abstract][Full Text] [Related]
33. A study of human lens cell growth in vitro. A model for posterior capsule opacification. Liu CS; Wormstone IM; Duncan G; Marcantonio JM; Webb SF; Davies PD Invest Ophthalmol Vis Sci; 1996 Apr; 37(5):906-14. PubMed ID: 8603875 [TBL] [Abstract][Full Text] [Related]
34. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase. Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866 [TBL] [Abstract][Full Text] [Related]
35. Transmission of the normal and cataractous lenses. Bielski A; Robaczewski T; Wolnikowski J; Bieganowski L Lens Eye Toxic Res; 1991; 8(2-3):101-8. PubMed ID: 1911631 [TBL] [Abstract][Full Text] [Related]
36. Cholesterol, phospholipid, and protein changes in focal opacities in the human eye lens. Duindam JJ; Vrensen GF; Otto C; Greve J Invest Ophthalmol Vis Sci; 1998 Jan; 39(1):94-103. PubMed ID: 9430550 [TBL] [Abstract][Full Text] [Related]
37. In vivo non-invasive studies on the human lens. Lerman S; Wandel T; Schechter A; Schenck J; Souza SP Magn Reson Imaging; 1991; 9(4):525-32. PubMed ID: 1779723 [TBL] [Abstract][Full Text] [Related]
38. [1H-NMR study on protein of normal and galactose cataractous rat whole lenses]. Kaizuka Y Nippon Ganka Gakkai Zasshi; 1992 Jan; 96(1):15-21. PubMed ID: 1553869 [TBL] [Abstract][Full Text] [Related]
39. Influence of age, diabetes, and cataract on calcium, lipid-calcium, and protein-calcium relationships in human lenses. Tang D; Borchman D; Yappert MC; Vrensen GF; Rasi V Invest Ophthalmol Vis Sci; 2003 May; 44(5):2059-66. PubMed ID: 12714644 [TBL] [Abstract][Full Text] [Related]
40. An experimental and clinical evaluation of lens transparency and aging. Lerman S J Gerontol; 1983 May; 38(3):293-301. PubMed ID: 6341445 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]