BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 1302260)

  • 1. Effects of tetrodotoxin, Ca2+ absence, d-tubocurarine and vesamicol on spontaneous acetylcholine release from rat muscle.
    Dolezal V; Tucek S
    J Physiol; 1992 Dec; 458():1-9. PubMed ID: 1302260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In favour of the vesicular hypothesis: neurochemical evidence that vesamicol (AH5183) inhibits stimulation-evoked release of acetylcholine from neuromuscular junction.
    Vizi ES
    Br J Pharmacol; 1989 Nov; 98(3):898-902. PubMed ID: 2590773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotinic antagonist-produced frequency-dependent changes in acetylcholine release from rat motor nerve terminals.
    Tian L; Prior C; Dempster J; Marshall IG
    J Physiol; 1994 May; 476(3):517-29. PubMed ID: 7914535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+o-independent veratridine-evoked acetylcholine release from striatal slices is not inhibited by vesamicol (AH5183): mobilization of distinct transmitter pools.
    Adam-Vizi V; Deri Z; Vizi ES; Sershen H; Lajtha A
    J Neurochem; 1991 Jan; 56(1):52-8. PubMed ID: 1987325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of calcium on the modulation of spontaneous acetylcholine efflux by the D2 dopamine receptor subtype in rat striatal synaptosomes.
    Sanz AG; Badia A; Clos MV
    Brain Res; 2000 Jan; 854(1-2):42-7. PubMed ID: 10784105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholine synthesis by a sympathetic ganglion in the presence of 2-(4-phenylpiperidino)cyclohexanol (AH5183) and picrylsulfonic acid.
    Mykita S; Collier B
    J Neurochem; 1989 Jun; 52(6):1686-93. PubMed ID: 2723629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surplus acetylcholine and acetylcholine release in the rat diaphragm.
    Molenaar PC; Oen BS; Polak RL; van der Laaken AL
    J Physiol; 1987 Apr; 385():147-67. PubMed ID: 3498823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The synthesis and release of acetylcholine in normal and denervated rat diaphragms during incubation in vitro.
    Dolezal V; Tucek S
    J Physiol; 1983 Jan; 334():461-74. PubMed ID: 6864565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is an acetylcholine transport system responsible for nonquantal release of acetylcholine at the rodent myoneural junction?
    Edwards C; Dolezal V; Tucek S; Zemková H; Vyskocil F
    Proc Natl Acad Sci U S A; 1985 May; 82(10):3514-8. PubMed ID: 3858836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobilization of the readily releasable pool of acetylcholine from a sympathetic ganglion by tityustoxin in the presence of vesamicol.
    Prado MA; Gomez MV; Collier B
    J Neurochem; 1992 Aug; 59(2):544-52. PubMed ID: 1629727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on early post-denervation changes of non-quantal and quantal acetylcholine release in the rat diaphragm.
    Zemková H; Vyskocil F; Edwards C
    Pflugers Arch; 1987 Aug; 409(4-5):540-6. PubMed ID: 3627968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobilization of a vesamicol-insensitive pool of acetylcholine from a sympathetic ganglion by ouabain.
    Prado MA; Gomez MV; Collier B
    J Neurochem; 1993 Jul; 61(1):45-56. PubMed ID: 8515287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin and modulation of ACh release from rat airway cholinergic nerves.
    Zhu FX; Zhang XY; Robinson NE
    Am J Physiol; 1997 Jan; 272(1 Pt 1):L8-14. PubMed ID: 9038896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Routes of acetylcholine leakage from cytosolic and vesicular compartments of rat motor nerve terminals.
    Smith DO
    Neurosci Lett; 1992 Jan; 135(1):5-9. PubMed ID: 1542437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A possible role for the acetylcholine transport system in non-quantal release of acetylcholine at the rodent myoneural junction.
    Edwards C; Dolezal V; Tucek S; Zemkova H; Vyskocil F
    P R Health Sci J; 1988 Aug; 7(2):71-4. PubMed ID: 2847217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of protein kinase C in the release of [3H]acetylcholine from myenteric plexus treated with vesamicol.
    Clarizia AD; Romano-Silva MA; Prado VF; Gomez MV; Prado MA
    Neurosci Lett; 1998 Mar; 244(2):115-7. PubMed ID: 9572599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of 2-(4-phenylpiperidino)cyclohexanol on acetylcholine release and subcellular distribution in rat striatal slices.
    Rícný J; Collier B
    J Neurochem; 1986 Nov; 47(5):1627-33. PubMed ID: 3760877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylcholine mobilization in a sympathetic ganglion in the presence and absence of 2-(4-phenylpiperidino)cyclohexanol (AH5183).
    Cabeza R; Collier B
    J Neurochem; 1988 Jan; 50(1):112-21. PubMed ID: 3335838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylcholine synthesis is modulated by acetylcholine content of cytosolic fraction but not by that of releasable fraction.
    Suzuki T; Kashima Y; Fujimoto K; Kawashima K
    Neurosci Lett; 1992 Sep; 144(1-2):127-9. PubMed ID: 1436692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parameters not influenced by vesamicol: membrane potential, calcium uptake, and internal calcium concentration of synaptosomes.
    Deri Z; Adam-Vizi V
    Neurochem Res; 1992 Jun; 17(6):539-44. PubMed ID: 1603260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.