These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1302305)

  • 21. On the role of bone damage in calcium homeostasis.
    Martínez-Reina J; García-Aznar JM; Domínguez J; Doblaré M
    J Theor Biol; 2008 Oct; 254(3):704-12. PubMed ID: 18625247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone kinetics of calcium-45 and pyrophosphate labeled with technetium-96: an autoradiographic evaluation.
    Guillemart A; Le Pape A; Galy G; Besnard JC
    J Nucl Med; 1980 May; 21(5):466-70. PubMed ID: 6246225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inulin, oligofructose and mineral metabolism - experimental data and mechanism.
    Scholz-Ahrens KE; Schrezenmeir J
    Br J Nutr; 2002 May; 87 Suppl 2():S179-86. PubMed ID: 12088516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Studies of metabolism of bone minerals in osteoporosis with radioactive substances].
    Dymling JF
    Internist (Berl); 1966 Nov; 7(11):578-81. PubMed ID: 4865832
    [No Abstract]   [Full Text] [Related]  

  • 25. [Experimental studies on mineral metabolism in bone grafting using Ca 45].
    Morisue K
    Sapporo Igaku Zasshi; 1965 Aug; 28(2):144-53. PubMed ID: 5328398
    [No Abstract]   [Full Text] [Related]  

  • 26. Low-level lifetime exposure to cadmium decreases skeletal mineralization and enhances bone loss in aged rats.
    Brzóska MM; Moniuszko-Jakoniuk J
    Bone; 2004 Nov; 35(5):1180-91. PubMed ID: 15542044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Incorporation of radioactive calcium and technetium pyrophosphate in to bones].
    Markt B; Bergmann G; Raab W; Willvonseder R
    Acta Med Austriaca; 1977; 4(4-9):144-8. PubMed ID: 205073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation and modification of a physiologically based model of lead kinetics using data from a sequential isotope study in cynomolgus monkeys.
    O'Flaherty EJ; Inskip MJ; Franklin CA; Durbin PW; Manton WI; Baccanale CL
    Toxicol Appl Pharmacol; 1998 Mar; 149(1):1-16. PubMed ID: 9512721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium intake, calcium bioavailability and bone health.
    Cashman KD
    Br J Nutr; 2002 May; 87 Suppl 2():S169-77. PubMed ID: 12088515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Hierarchically organized model of interconnected cellular and tissue mechanisms of calcium exchange between bone and blood].
    Avrunin AS; Parshin LK
    Morfologiia; 2013; 143(1):76-84. PubMed ID: 23805621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Labeling the human skeleton with 41Ca to assess changes in bone calcium metabolism.
    Denk E; Hillegonds D; Vogel J; Synal A; Geppert C; Wendt K; Fattinger K; Hennessy C; Berglund M; Hurrell RF; Walczyk T
    Anal Bioanal Chem; 2006 Nov; 386(6):1587-602. PubMed ID: 17033771
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A model-independent comparison of the rates of uptake and short term retention of 47Ca and 85Sr by the skeleton.
    Reeve J; Hesp R
    Calcif Tissue Res; 1976 Dec; 22(2):183-9. PubMed ID: 1000352
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uptake of Pb by human skeleton and comparative metabolism of Pb and alkaline earth elements.
    Heard MJ; Chamberlain AC
    Health Phys; 1984 Dec; 47(6):857-65. PubMed ID: 6511428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of mineral-collagen interfacial behavior on the microdamage progression in bone using a probabilistic cohesive finite element model.
    Luo Q; Nakade R; Dong X; Rong Q; Wang X
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):943-52. PubMed ID: 21783104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Current developments in research of bone and mineral metabolism].
    Herrmann-Erlee MP
    Tijdschr Ziekenverpl; 1977 Apr; 30(9):414-20. PubMed ID: 585510
    [No Abstract]   [Full Text] [Related]  

  • 36. Post-mortem migration of bone-seeking radionuclides in the rat and rabbit and its effect on estimates of bone uptake.
    Tothill P; Macpherson JN
    Clin Sci Mol Med; 1978 Aug; 55(2):221-3. PubMed ID: 679630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone resorption measurement with unusual bone markers: critical evaluation of the method in phosphorus-deficient and calcium-deficient growing rats.
    Thomasset M; Cuisinier-Gleizes P; Mathieu H
    Calcif Tissue Res; 1976 Aug; 21(1):1-15. PubMed ID: 953788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A PROPOSED MECHANISM FOR THE UPTAKE OF RADIOACTIVE TRACERS BY AN IN VITRO HYDROXYAPATITE SYSTEM.
    EDGINGTON DN
    Radiat Res; 1965 Jun; 25():257-68. PubMed ID: 14295119
    [No Abstract]   [Full Text] [Related]  

  • 39. A physiologically based model of skeletal growth in the rat.
    O'Flaherty EJ
    Toxicol Lett; 1988 Oct; 43(1-3):85-95. PubMed ID: 3140430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proceedings: The role of radio-isotopes in the study of hyperpathyroidism.
    Hosking DJ
    Br J Radiol; 1976 Mar; 49(579):286-7. PubMed ID: 1276597
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.