These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 1302893)

  • 1. Analysis by digital simulation of the peripheral and renal resistance in hypovolemic hypotension.
    Roa L; Garrachón F; González-Barón S
    Rev Esp Fisiol; 1992 Dec; 48(4):239-44. PubMed ID: 1302893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition between intrinsic and extrinsic controls of resistance vessels of major vascular beds during hemorrhagic hypotension and shock.
    Green HD; Bond RF; Rapela CE; Schmid HE; Manley E; Farrar DJ
    Adv Shock Res; 1980; 3():77-104. PubMed ID: 7304320
    [No Abstract]   [Full Text] [Related]  

  • 3. Relative contribution of renal nerve and adrenal gland to renal vascular tone during prolonged canine hemorrhagic hypotension.
    Koyama S; Fujita T; Shibamoto T; Matsuda Y; Hayashi T; Saeki Y; Kawamoto M; Yamaguchi Y
    Circ Shock; 1993 Apr; 39(4):269-74. PubMed ID: 8485818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A new proposal on the neural component of the control system of renal blood flow. Analysis using digital simulation].
    Roa LM; Garrachón F; González-Barón S
    Rev Esp Fisiol; 1989 Sep; 45(3):221-6. PubMed ID: 2616868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal hemodynamics in hemorrhagic hypotension: studies on the effects of pre- and postjunctional dopamine receptor agonists.
    Hamed AT; Ginos JZ; Ekas RD; Jandhyala BS; Lokhandwala MF
    J Cardiovasc Pharmacol; 1983; 5(2):207-12. PubMed ID: 6188891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of experimental hypotension on hemodynamics and renin secretion rate.
    Simchon S; Fan FC; Chen RY; Kim S; Chien S
    Circ Shock; 1985; 15(1):27-36. PubMed ID: 3884173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between the sympathetic nervous system and the kidney: experimental observations.
    Stella A; Zanchetti A
    J Hypertens Suppl; 1985 Dec; 3(4):S19-25. PubMed ID: 3913755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Hypotensive crisis].
    Herren T
    Schweiz Med Wochenschr; 1993 May; 123(17):853-67. PubMed ID: 8497772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The adrenal-renal vascular connection contributes to increase in renal vascular resistance during an experimental hypotension in the rat.
    Ziecina R; Abramczyk P; Lisiecka A; Przybylski J
    J Physiol Pharmacol; 1997 Jun; 48(2):179-84. PubMed ID: 9223022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow-dependence of vasodilatory response in renal vascular bed to hemorrhage in dogs.
    Mitani Y; Hosomi H; Tateishi J; Iwasaki T
    Biomed Biochim Acta; 1987; 46(6):487-98. PubMed ID: 3675566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Experimental study of renal and uterine blood flow regulation in obstetric hypovolemic shock (author's transl)].
    Sanda Y
    Nihon Sanka Fujinka Gakkai Zasshi; 1982 Jul; 34(7):905-14. PubMed ID: 7108308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of intrarenal blood flow consequent to left atrial balloon inflation.
    Passmore JC; Stremel RW; Hock CE; Allen RL; Bradford WB
    Circ Shock; 1985; 15(1):37-47. PubMed ID: 3978762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrarenal adenosine produces hypertension by activating the sympathetic nervous system via the renal nerves in the dog.
    Katholi RE; Whitlow PL; Hageman GR; Woods WT
    J Hypertens; 1984 Aug; 2(4):349-59. PubMed ID: 6397533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal hemodynamic alterations following administration of thiopental, diazepam, or ketamine to conscious hypovolemic dogs.
    Priano LL
    Adv Shock Res; 1983; 9():173-88. PubMed ID: 6880968
    [No Abstract]   [Full Text] [Related]  

  • 15. An experimental study into the validity of clearance methods of measuring renal blood flow.
    Sykes BJ; Hoie J; Schenk WG
    Surg Gynecol Obstet; 1972 Dec; 135(6):877-82. PubMed ID: 4563819
    [No Abstract]   [Full Text] [Related]  

  • 16. Renal nerves and hypertension: an update.
    Katholi RE
    Fed Proc; 1985 Oct; 44(13):2846-50. PubMed ID: 3899731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral, coronary, and renal blood flows during hemorrhagic hypotension in anesthetized miniature swine.
    Laughlin MH
    Adv Shock Res; 1983; 9():189-201. PubMed ID: 6880969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the contribution of Guyton's large circulatory model to long-term control of arterial pressure.
    Montani JP; Van Vliet BN
    Exp Physiol; 2009 Apr; 94(4):382-8. PubMed ID: 19286638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The renal and hepatic circulations in anaesthesia.
    Freeman J
    Ann R Coll Surg Engl; 1970 Mar; 46(3):141-3. PubMed ID: 5445658
    [No Abstract]   [Full Text] [Related]  

  • 20. Dynamic analysis of patterns of renal sympathetic nerve activity: implications for renal function.
    DiBona GF
    Exp Physiol; 2005 Mar; 90(2):159-61. PubMed ID: 15604107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.