BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1303138)

  • 1. Glial cells in coculture can increase the acetylcholinesterase activity in human brain endothelial cells.
    Pákáski M; Kása P
    Neurochem Int; 1992 Jul; 21(1):129-33. PubMed ID: 1303138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelial cells from human fetal brain microvessels may be cholinoceptive, but do not synthesize acetylcholine.
    Kasa P; Pakaski M; Joó F; Lajtha A
    J Neurochem; 1991 Jun; 56(6):2143-6. PubMed ID: 2027020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epidermal growth factor affects both glia and cholinergic neurons in septal cell cultures.
    Kenigsberg RL; Mazzoni IE; Collier B; Cuello AC
    Neuroscience; 1992 Sep; 50(1):85-97. PubMed ID: 1407562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunohistochemical analysis for acetylcholinesterase and choline acetyltransferase in mouse cerebral cortex after traumatic brain injury.
    Horio T; Ozawa A; Kamiie J; Sakaue M
    J Vet Med Sci; 2020 Jun; 82(6):827-835. PubMed ID: 32321871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming growth factor-alpha's effects on astroglial-cholinergic cell interactions in the medial septal area in vitro are mediated by alpha 2-macroglobulin.
    Mazzoni IE; Kenigsberg RL
    Neuroscience; 1997 Dec; 81(4):1019-30. PubMed ID: 9330364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine.
    Mesulam MM; Guillozet A; Shaw P; Levey A; Duysen EG; Lockridge O
    Neuroscience; 2002; 110(4):627-39. PubMed ID: 11934471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional variability in butyrylcholinesterase activity regulates intrathecal cytokine and astroglial biomarker profiles in patients with Alzheimer's disease.
    Darreh-Shori T; Vijayaraghavan S; Aeinehband S; Piehl F; Lindblom RP; Nilsson B; Ekdahl KN; Långström B; Almkvist O; Nordberg A
    Neurobiol Aging; 2013 Nov; 34(11):2465-81. PubMed ID: 23759148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nerve growth factor increases choline acetyltransferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons.
    Hefti F; Hartikka J; Eckenstein F; Gnahn H; Heumann R; Schwab M
    Neuroscience; 1985 Jan; 14(1):55-68. PubMed ID: 3974885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity of attachment and neurite outgrowth of dissociated basal forebrain cholinergic neurons seeded on to organotypic slice cultures of forebrain.
    Robertson RT; Baratta J; Kageyama GH; Ha DH; Yu J
    Neuroscience; 1997 Oct; 80(3):741-52. PubMed ID: 9276490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual effects of thrombin and a 14-amino acid peptide agonist of the thrombin receptor on septal cholinergic neurons.
    Debeir T; Benavides J; Vigé X
    Brain Res; 1996 Feb; 708(1-2):159-66. PubMed ID: 8720872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thrombin indirectly affects cholinergic cell expression in primary septal cell cultures in a manner distinct from nerve growth factor.
    Mazzoni IE; Kenigsberg RL
    Neuroscience; 1991; 45(1):195-204. PubMed ID: 1754063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radial glial cell transformation to astrocytes is bidirectional: regulation by a diffusible factor in embryonic forebrain.
    Hunter KE; Hatten ME
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):2061-5. PubMed ID: 7892225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of endothelial cells derived from the blood-brain barrier and of astrocytes in culture.
    Ghazanfari FA; Stewart RR
    Brain Res; 2001 Jan; 890(1):49-65. PubMed ID: 11164768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer's disease resemble embryonic development--a study of molecular forms.
    Arendt T; Brückner MK; Lange M; Bigl V
    Neurochem Int; 1992 Oct; 21(3):381-96. PubMed ID: 1303164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in neuronal and glial cell phenotypic expression in neuron-glia cocultures: influence of glia-conditioned media and living glial cell substrata.
    Lee K; Kentroti S; Vernadakis A
    Brain Res Bull; 1992 Jun; 28(6):861-70. PubMed ID: 1353404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Micromethods in the determination of choline acetyltransferase, acetylcholinesterase and butyrylcholinesterase in brain tissue].
    Skopec F
    Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove Suppl; 1988; 31(4):511-21. PubMed ID: 3249935
    [No Abstract]   [Full Text] [Related]  

  • 17. Organotypic slice cultures of the rat striatum--I. A histochemical and immunocytochemical study of acetylcholinesterase, choline acetyltransferase, glutamate decarboxylase and GABA.
    Ostergaard K
    Neuroscience; 1993 Apr; 53(3):679-93. PubMed ID: 8487950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of the resistance of a human endothelial cell line by human retinal glia.
    Diaz CM; Penfold PL; Provis JM
    Aust N Z J Ophthalmol; 1998 May; 26 Suppl 1():S62-4. PubMed ID: 9685026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of acetylcholinesterase and butyrylcholinesterase activities in retinal chick pigment epithelium during development.
    Salceda R; Martinez MT
    Exp Eye Res; 1992 Jan; 54(1):17-22. PubMed ID: 1541336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia.
    Perry EK; Tomlinson BE; Blessed G; Bergmann K; Gibson PH; Perry RH
    Br Med J; 1978 Nov; 2(6150):1457-9. PubMed ID: 719462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.