These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 13032040)

  • 21. Effects of microbial phytase, produced by solid-state fermentation, on the performance and nutrient utilisation of broilers fed maize- and wheat-based diets.
    Wu YB; Ravindran V; Hendriks WH
    Br Poult Sci; 2003 Dec; 44(5):710-8. PubMed ID: 14965091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of partial replacement of ground wheat with whole wheat and exogenous enzyme supplementation on growth performance, nutrient digestibility and energy utilization in young broilers.
    Abdollahi MR; Ravindran V; Amerah AM
    J Anim Physiol Anim Nutr (Berl); 2016 Oct; 100(5):929-37. PubMed ID: 27080922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The wheat leaf phosphatases. I. A survey of the inhibitors at pH 5.7.
    ROBERTS DW
    J Biol Chem; 1956 Apr; 219(2):711-8. PubMed ID: 13319292
    [No Abstract]   [Full Text] [Related]  

  • 24. The term phytase comprises several different classes of enzymes.
    Mullaney EJ; Ullah AH
    Biochem Biophys Res Commun; 2003 Dec; 312(1):179-84. PubMed ID: 14630039
    [No Abstract]   [Full Text] [Related]  

  • 25. Selection of phytate-degrading human bifidobacteria and application in whole wheat dough fermentation.
    Palacios MC; Haros M; Rosell CM; Sanz Y
    Food Microbiol; 2008 Feb; 25(1):169-76. PubMed ID: 17993391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The wheat leaf phosphatases. III. A survey of the heat stability of the enzymes active at pH 5.7.
    ROBERTS DW
    J Biol Chem; 1957 Jun; 226(2):751-4. PubMed ID: 13438860
    [No Abstract]   [Full Text] [Related]  

  • 27. The wheat leaf phosphatases. II. Pathways of hydrolysis of some nucleotides at pH 5.5.
    ROBERTS DW
    J Biol Chem; 1956 Sep; 222(1):259-70. PubMed ID: 13366999
    [No Abstract]   [Full Text] [Related]  

  • 28. Studies in histochemistry; localization of phosphatases in the wheat grain and in the epicotyl and roots of the germinated grain.
    GLICK D; FISCHER EE
    Arch Biochem; 1946 Sep; 11():65-79. PubMed ID: 20998027
    [No Abstract]   [Full Text] [Related]  

  • 29. Dietary Aspergillus niger phytase increases iron absorption in humans.
    Sandberg AS; Hulthén LR; Türk M
    J Nutr; 1996 Feb; 126(2):476-80. PubMed ID: 8632221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aspergillus ficuum phytase activity is inhibited by cereal grain components.
    Bekalu ZE; Madsen CK; Dionisio G; Brinch-Pedersen H
    PLoS One; 2017; 12(5):e0176838. PubMed ID: 28472144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The wheat leaf phosphatases. IV. The effect of metal ions on the acid phosphatase activity of dialyzed juice.
    ROBERTS DW
    J Biol Chem; 1958 Jan; 230(1):213-8. PubMed ID: 13502390
    [No Abstract]   [Full Text] [Related]  

  • 32. Effect of microbial phytase on phosphorus digestibility in non-heat-treated and heat-treated wheat-barley pig diets.
    Blaabjerg K; Nørgaard JV; Poulsen HD
    J Anim Sci; 2012 Dec; 90 Suppl 4():206-8. PubMed ID: 23365331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracellular Secretion of Phytase from Transgenic Wheat Roots Allows Utilization of Phytate for Enhanced Phosphorus Uptake.
    Mohsin S; Maqbool A; Ashraf M; Malik KA
    Mol Biotechnol; 2017 Aug; 59(8):334-342. PubMed ID: 28667571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel phytase from Pteris vittata resistant to arsenate, high temperature, and soil deactivation.
    Lessl JT; Ma LQ; Rathinasabapathi B; Guy C
    Environ Sci Technol; 2013 Mar; 47(5):2204-11. PubMed ID: 23379685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nutrient digestibility and performance responses of growing pigs fed phytase- and xylanase-supplemented wheat-based diets.
    Woyengo TA; Sands JS; Guenter W; Nyachoti CM
    J Anim Sci; 2008 Apr; 86(4):848-57. PubMed ID: 18203976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of phytase from Aspergillus niger on plant growth and mineral assimilation in wheat (Triticum aestivum Linn.) and its potential for use as a soil amendment.
    Gujar PD; Bhavsar KP; Khire JM
    J Sci Food Agric; 2013 Jul; 93(9):2242-7. PubMed ID: 23355258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of phytase production by solid substrate fermentation.
    Bogar B; Szakacs G; Linden JC; Pandey A; Tengerdy RP
    J Ind Microbiol Biotechnol; 2003 Mar; 30(3):183-9. PubMed ID: 12715256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains.
    Abid N; Khatoon A; Maqbool A; Irfan M; Bashir A; Asif I; Shahid M; Saeed A; Brinch-Pedersen H; Malik KA
    Transgenic Res; 2017 Feb; 26(1):109-122. PubMed ID: 27687031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel Glucose-1-Phosphatase with High Phytase Activity and Unusual Metal Ion Activation from Soil Bacterium Pantoea sp. Strain 3.5.1.
    Suleimanova AD; Beinhauer A; Valeeva LR; Chastukhina IB; Balaban NP; Shakirov EV; Greiner R; Sharipova MR
    Appl Environ Microbiol; 2015 Oct; 81(19):6790-9. PubMed ID: 26209662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lily pollen alkaline phytase is a histidine phosphatase similar to mammalian multiple inositol polyphosphate phosphatase (MINPP).
    Mehta BD; Jog SP; Johnson SC; Murthy PP
    Phytochemistry; 2006 Sep; 67(17):1874-86. PubMed ID: 16860350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.