These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 1303746)

  • 1. On the multiple simultaneous superposition of molecular structures by rigid body transformations.
    Diamond R
    Protein Sci; 1992 Oct; 1(10):1279-87. PubMed ID: 1303746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of the N-terminal zinc fingers of the Xenopus laevis double-stranded RNA-binding protein ZFa.
    Möller HM; Martinez-Yamout MA; Dyson HJ; Wright PE
    J Mol Biol; 2005 Aug; 351(4):718-30. PubMed ID: 16051273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray structural analysis of the yeast cell cycle regulator Swi6 reveals variations of the ankyrin fold and has implications for Swi6 function.
    Foord R; Taylor IA; Sedgwick SG; Smerdon SJ
    Nat Struct Biol; 1999 Feb; 6(2):157-65. PubMed ID: 10048928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1H, 15N resonance assignment and three-dimensional structure of CYP1 (HAP1) DNA-binding domain.
    Timmerman J; Vuidepot AL; Bontems F; Lallemand JY; Gervais M; Shechter E; Guiard B
    J Mol Biol; 1996 Jun; 259(4):792-804. PubMed ID: 8683583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved segmental isotope labeling methods for the NMR study of multidomain or large proteins: application to the RRMs of Npl3p and hnRNP L.
    Skrisovska L; Allain FH
    J Mol Biol; 2008 Jan; 375(1):151-64. PubMed ID: 17936301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR structure of the DNA-binding domain of the cell cycle protein Mbp1 from Saccharomyces cerevisiae.
    Nair M; McIntosh PB; Frenkiel TA; Kelly G; Taylor IA; Smerdon SJ; Lane AN
    Biochemistry; 2003 Feb; 42(5):1266-73. PubMed ID: 12564929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing programs for rigid-body multiple structural superposition of proteins.
    Hill AD; Reilly PJ
    Proteins; 2006 Jul; 64(1):219-26. PubMed ID: 16568449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rigid domains in proteins: an algorithmic approach to their identification.
    Nichols WL; Rose GD; Ten Eyck LF; Zimm BH
    Proteins; 1995 Sep; 23(1):38-48. PubMed ID: 8539249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional architecture of the yeast cell-cycle transcription factor swi6.
    Sedgwick SG; Taylor IA; Adam AC; Spanos A; Howell S; Morgan BA; Treiber MK; Kanuga N; Banks GR; Foord R; Smerdon SJ
    J Mol Biol; 1998 Sep; 281(5):763-75. PubMed ID: 9719633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory motif finding by logic regression.
    Keles S; van der Laan MJ; Vulpe C
    Bioinformatics; 2004 Nov; 20(16):2799-811. PubMed ID: 15166027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of a zinc finger domain of yeast ADR1.
    Klevit RE; Herriott JR; Horvath SJ
    Proteins; 1990; 7(3):215-26. PubMed ID: 2114025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The X-ray structure of the DNA-binding domain from the Saccharomyces cerevisiae cell-cycle transcription factor Mbp1 at 2.1 A resolution.
    Taylor IA; Treiber MK; Olivi L; Smerdon SJ
    J Mol Biol; 1997 Sep; 272(1):1-8. PubMed ID: 9299332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structure of the DNA-binding domain of Cd2-GAL4 from S. cerevisiae.
    Baleja JD; Marmorstein R; Harrison SC; Wagner G
    Nature; 1992 Apr; 356(6368):450-3. PubMed ID: 1557130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation spaces of proteins.
    Sullivan DC; Kuntz ID
    Proteins; 2001 Mar; 42(4):495-511. PubMed ID: 11170204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Completely automated, highly error-tolerant macromolecular structure determination from multidimensional nuclear overhauser enhancement spectra and chemical shift assignments.
    Kuszewski J; Schwieters CD; Garrett DS; Byrd RA; Tjandra N; Clore GM
    J Am Chem Soc; 2004 May; 126(20):6258-73. PubMed ID: 15149223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Algorithms for optimal protein structure alignment.
    Poleksic A
    Bioinformatics; 2009 Nov; 25(21):2751-6. PubMed ID: 19734152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9.
    Evans SP; Bycroft M
    J Mol Biol; 1999 Aug; 291(3):661-9. PubMed ID: 10448044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of the 1.0 MDa CCR4-NOT complex identifies two novel components of the complex.
    Chen J; Rappsilber J; Chiang YC; Russell P; Mann M; Denis CL
    J Mol Biol; 2001 Dec; 314(4):683-94. PubMed ID: 11733989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy.
    Clore GM; Robien MA; Gronenborn AM
    J Mol Biol; 1993 May; 231(1):82-102. PubMed ID: 8496968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure, biochemical and genetic characterization of yeast and E. cuniculi TAF(II)5 N-terminal domain: implications for TFIID assembly.
    Romier C; James N; Birck C; Cavarelli J; Vivarès C; Collart MA; Moras D
    J Mol Biol; 2007 May; 368(5):1292-306. PubMed ID: 17397863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.