These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 1303770)

  • 21. Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription.
    Chen HT; Legault P; Glushka J; Omichinski JG; Scott RA
    Protein Sci; 2000 Sep; 9(9):1743-52. PubMed ID: 11045620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of backbone stability near Ala44 in the high reduction potential class of rubredoxins.
    Tan ML; Kang C; Ichiye T
    Proteins; 2006 Mar; 62(3):708-14. PubMed ID: 16362979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zinc finger motif for single-stranded nucleic acids? Investigations by nuclear magnetic resonance.
    Summers MF
    J Cell Biochem; 1991 Jan; 45(1):41-8. PubMed ID: 2005183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methionyl-tRNA synthetase zinc binding domain. Three-dimensional structure and homology with rubredoxin and gag retroviral proteins.
    Fourmy D; Dardel F; Blanquet S
    J Mol Biol; 1993 Jun; 231(4):1078-89. PubMed ID: 8515466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A QM/MM approach to interpreting 67Zn solid-state NMR data in zinc proteins.
    Lipton AS; Heck RW; Staeheli GR; Valiev M; De Jong WA; Ellis PD
    J Am Chem Soc; 2008 May; 130(19):6224-30. PubMed ID: 18410102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional structure and molecular modelling of C1- inhibitor.
    Perkins SJ
    Behring Inst Mitt; 1993 Dec; (93):63-80. PubMed ID: 8172587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics simulations of rubredoxin from Clostridium pasteurianum: changes in structure and electrostatic potential during redox reactions.
    Yelle RB; Park NS; Ichiye T
    Proteins; 1995 Jun; 22(2):154-67. PubMed ID: 7567963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Absence of kinetic thermal stabilization in a hyperthermophile rubredoxin indicated by 40 microsecond folding in the presence of irreversible denaturation.
    LeMaster DM; Tang J; Hernández G
    Proteins; 2004 Oct; 57(1):118-27. PubMed ID: 15326598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystallization and preliminary X-ray diffraction studies of a hyperthermophilic Rieske protein variant (SDX-triple) with an engineered rubredoxin-like mononuclear iron site.
    Iwasaki T; Kounosu A; Ohmori D; Kumasaka T
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Oct; 62(Pt 10):993-5. PubMed ID: 17012793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature dependence of the redox potential of rubredoxin from Pyrococcus furiosus: a molecular dynamics study.
    Swartz PD; Ichiye T
    Biochemistry; 1996 Oct; 35(43):13772-9. PubMed ID: 8901519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The solution structure of ribosomal protein L36 from Thermus thermophilus reveals a zinc-ribbon-like fold.
    Härd T; Rak A; Allard P; Kloo L; Garber M
    J Mol Biol; 2000 Feb; 296(1):169-80. PubMed ID: 10656825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NMR and X-ray analysis of structural additivity in metal binding site-swapped hybrids of rubredoxin.
    LeMaster DM; Anderson JS; Wang L; Guo Y; Li H; Hernández G
    BMC Struct Biol; 2007 Dec; 7():81. PubMed ID: 18053245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution structure of a naturally-occurring zinc-peptide complex demonstrates that the N-terminal zinc-binding module of the Lasp-1 LIM domain is an independent folding unit.
    Hammarström A; Berndt KD; Sillard R; Adermann K; Otting G
    Biochemistry; 1996 Oct; 35(39):12723-32. PubMed ID: 8841116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A billion-fold range in acidity for the solvent-exposed amides of Pyrococcus furiosus rubredoxin.
    Anderson JS; Hernández G; Lemaster DM
    Biochemistry; 2008 Jun; 47(23):6178-88. PubMed ID: 18479148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox properties of mesophilic and hyperthermophilic rubredoxins as a function of pressure and temperature.
    Gillès de Pélichy LD; Smith ET
    Biochemistry; 1999 Jun; 38(24):7874-80. PubMed ID: 10387028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-resolution solution structure of the catalytic fragment of human collagenase-3 (MMP-13) complexed with a hydroxamic acid inhibitor.
    Moy FJ; Chanda PK; Chen JM; Cosmi S; Edris W; Levin JI; Powers R
    J Mol Biol; 2000 Sep; 302(3):671-89. PubMed ID: 10986126
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ.
    Martinez-Yamout M; Legge GB; Zhang O; Wright PE; Dyson HJ
    J Mol Biol; 2000 Jul; 300(4):805-18. PubMed ID: 10891270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Secondary structure extensions in Pyrococcus furiosus ferredoxin destabilize the disulfide bond relative to that in other hyperthermostable ferredoxins. Global consequences for the disulfide orientational heterogeneity.
    Wang PL; Calzolai L; Bren KL; Teng Q; Jenney FE; Brereton PS; Howard JB; Adams MW; La Mar GN
    Biochemistry; 1999 Jun; 38(25):8167-78. PubMed ID: 10387062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced thermal stability achieved without increased conformational rigidity at physiological temperatures: spatial propagation of differential flexibility in rubredoxin hybrids.
    LeMaster DM; Tang J; Paredes DI; Hernández G
    Proteins; 2005 Nov; 61(3):608-16. PubMed ID: 16130131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogen bonds in rubredoxins from mesophilic and hyperthermophilic organisms.
    Bougault CM; Eidsness MK; Prestegard JH
    Biochemistry; 2003 Apr; 42(15):4357-72. PubMed ID: 12693931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.