These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1304361)

  • 41. Structure of a Leu3-DNA complex: recognition of everted CGG half-sites by a Zn2Cys6 binuclear cluster protein.
    Fitzgerald MX; Rojas JR; Kim JM; Kohlhaw GB; Marmorstein R
    Structure; 2006 Apr; 14(4):725-35. PubMed ID: 16615914
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gene 32 protein, the single-stranded DNA binding protein from bacteriophage T4, is a zinc metalloprotein.
    Giedroc DP; Keating KM; Williams KR; Konigsberg WH; Coleman JE
    Proc Natl Acad Sci U S A; 1986 Nov; 83(22):8452-6. PubMed ID: 3490667
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A zinc(II)/lead(II)/cadmium(II)-inducible operon from the Cyanobacterium anabaena is regulated by AztR, an alpha3N ArsR/SmtB metalloregulator.
    Liu T; Golden JW; Giedroc DP
    Biochemistry; 2005 Jun; 44(24):8673-83. PubMed ID: 15952774
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metal-induced folding of a designed metalloprotein.
    Kharenko OA; Ogawa MY
    J Inorg Biochem; 2004 Nov; 98(11):1971-4. PubMed ID: 15522423
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Peptidic models for the binding of Pb(II), Bi(III) and Cd(II) to mononuclear thiolate binding sites.
    Matzapetakis M; Ghosh D; Weng TC; Penner-Hahn JE; Pecoraro VL
    J Biol Inorg Chem; 2006 Oct; 11(7):876-90. PubMed ID: 16855818
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distinct metal binding configurations in ACE1.
    Dameron CT; George GN; Arnold P; Santhanagopalan V; Winge DR
    Biochemistry; 1993 Jul; 32(28):7294-301. PubMed ID: 8343519
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Specific interactions of metal ions with Cys-Xaa-Cys unit inserted into the peptide sequence.
    Kulon K; Woźniak D; Wegner K; Grzonka Z; Kozłowski H
    J Inorg Biochem; 2007 Nov; 101(11-12):1699-706. PubMed ID: 17532049
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of the DNA binding site of the GAL4 protein. A photo-CIDNP study.
    Serikawa Y; Shirakawa M; Kyogoku Y
    FEBS Lett; 1992 Mar; 299(3):205-8. PubMed ID: 1544495
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chiral copper(I)-thiolate clusters in metallothionein and glutathione.
    Presta A; Stillman MJ
    Chirality; 1994; 6(7):521-30. PubMed ID: 7986666
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interrelationships among biological activity, disulfide bonds, secondary structure, and metal ion binding for a chemically synthesized 34-amino-acid peptide derived from alpha-fetoprotein.
    MacColl R; Eisele LE; Stack RF; Hauer C; Vakharia DD; Benno A; Kelly WC; Mizejewski GJ
    Biochim Biophys Acta; 2001 Oct; 1528(2-3):127-34. PubMed ID: 11687299
    [TBL] [Abstract][Full Text] [Related]  

  • 51. p10 single-stranded nucleic acid binding protein from murine leukemia virus binds metal ions via the peptide sequence Cys26-X2-Cys29-X4-His34-X4-Cys39.
    Roberts WJ; Pan T; Elliott JI; Coleman JE; Williams KR
    Biochemistry; 1989 Dec; 28(26):10043-7. PubMed ID: 2695161
    [TBL] [Abstract][Full Text] [Related]  

  • 52. How does the GAL4 transcription factor recognize the appropriate DNA binding sites in vivo?
    Kodadek T
    Cell Mol Biol Res; 1993; 39(4):355-60. PubMed ID: 8312971
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions.
    Lefevre JF; Dayie KT; Peng JW; Wagner G
    Biochemistry; 1996 Feb; 35(8):2674-86. PubMed ID: 8611573
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Zinc co-ordination in the DNA-binding domain of the yeast transcriptional activator PPR1.
    Ball LJ; Diakun GP; Gadhavi PL; Young NA; Armstrong EM; Garner CD; Laue ED
    FEBS Lett; 1995 Jan; 358(3):278-82. PubMed ID: 7843415
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cadmium in metallothioneins.
    Freisinger E; Vašák M
    Met Ions Life Sci; 2013; 11():339-71. PubMed ID: 23430778
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Force fields including charge transfer and local polarization effects: Application to proteins containing multi/heavy metal ions.
    Sakharov DV; Lim C
    J Comput Chem; 2009 Jan; 30(2):191-202. PubMed ID: 18566982
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sulfide ions as modulators of metal-thiolate cluster size in a plant metallothionein.
    Huber T; Freisinger E
    Dalton Trans; 2013 Jun; 42(24):8878-89. PubMed ID: 23636452
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sunflower metallothionein family characterisation. Study of the Zn(II)- and Cd(II)-binding abilities of the HaMT1 and HaMT2 isoforms.
    Tomas M; Pagani MA; Andreo CS; Capdevila M; Atrian S; Bofill R
    J Inorg Biochem; 2015 Jul; 148():35-48. PubMed ID: 25770010
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling the Zn(2+) and Cd(2+) metalation mechanism in mammalian metallothionein 1a.
    Sutherland DE; Summers KL; Stillman MJ
    Biochem Biophys Res Commun; 2012 Oct; 426(4):601-7. PubMed ID: 22982309
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"?
    Seipel K; Georgiev O; Gerber HP; Schaffner W
    Mol Reprod Dev; 1994 Oct; 39(2):215-25. PubMed ID: 7826625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.