BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 1304366)

  • 41. Kinetics and mechanism of action of muscle pyruvate kinase.
    Dann LG; Britton HG
    Biochem J; 1978 Jan; 169(1):39-54. PubMed ID: 629752
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Irreversible inactivation of human erythrocyte pyruvate kinase by 2,3-butanedione.
    Kilinç K; Ozer N
    Arch Biochem Biophys; 1984 Apr; 230(1):321-6. PubMed ID: 6712241
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The reaction of diethyl pyrocarbonate with pyruvate kinase.
    Dann LG; Britton HG
    Biochem J; 1974 Feb; 137(2):405-7. PubMed ID: 4824216
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of the essential cysteine residue in the active site of bovine pyruvate dehydrogenase.
    Ali MS; Roche TE; Patel MS
    J Biol Chem; 1993 Oct; 268(30):22353-6. PubMed ID: 8226745
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The regulatory properties of rabbit muscle pyruvate kinase. The influence of substrate concentrations.
    Ainsworth S; Kinderlerer J; Gregory RB
    Biochem J; 1983 Feb; 209(2):401-11. PubMed ID: 6847625
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Isolation and sequence determination of an active site peptide of rabbit muscle pyruvate kinase.
    Bezares G; Eyzaguirre J; Hinrichs MV; Heinrikson RL; Reardon I; Kemp RG; Latshaw SP; Bazaes S
    Arch Biochem Biophys; 1987 Feb; 253(1):133-7. PubMed ID: 3813559
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The adenosine triphosphate inhibition of the pyruvate kinase reaction and its dependence on the total magnesium ion concentration.
    Holmsen H; Storm E
    Biochem J; 1969 Apr; 112(3):303-16. PubMed ID: 4308294
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A new affinity labeling reagent for the active site of glycogen synthase. Uridine diphosphopyridoxal.
    Tagaya M; Nakano K; Fukui T
    J Biol Chem; 1985 Jun; 260(11):6670-6. PubMed ID: 3922978
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Subunit dissociation and inactivation of pyruvate kinase by hydrostatic pressure oxidation of sulfhydryl groups and ligand effects on enzyme stability.
    De Felice FG; Soares VC; Ferreira ST
    Eur J Biochem; 1999 Nov; 266(1):163-9. PubMed ID: 10542061
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The importance of polarity in the evolution of the K+ binding site of pyruvate kinase.
    Ramírez-Silva L; Guerrero-Mendiola C; Cabrera N
    Int J Mol Sci; 2014 Dec; 15(12):22214-26. PubMed ID: 25474090
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparison of the structure and activity of cat and trout muscle pyruvate kinases.
    Harkins RN; Nocton JC; Russell MP; Fothergill LA; Muirhead H
    Eur J Biochem; 1983 Nov; 136(2):341-6. PubMed ID: 6628384
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermodynamic linkages in rabbit muscle pyruvate kinase: kinetic, equilibrium, and structural studies.
    Oberfelder RW; Lee LL; Lee JC
    Biochemistry; 1984 Aug; 23(17):3813-21. PubMed ID: 6487576
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of activating cations and inhibitor on the allosteric regulation of rabbit muscle pyruvate kinase.
    Li F; Yu T; Jiang H; Yu S
    Int J Biol Macromol; 2013 Sep; 60():219-25. PubMed ID: 23748005
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reaction of brain hexokinase with a substrate-like reagent. Alkylation of a single thiol at the active site.
    Swarup G; Kenkare UW
    Biochemistry; 1980 Aug; 19(17):4058-64. PubMed ID: 7407081
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ATP-dependent Saccharomyces cerevisiae phospho enol pyruvate carboxykinase: isolation and sequence of a peptide containing a highly reactive cysteine.
    Alvear M; Encinas MV; Kemp RG; Latshaw SP; Cardemil E
    Biochim Biophys Acta; 1992 Feb; 1119(1):35-8. PubMed ID: 1540632
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activation and inhibition of rabbit muscle pyruvate kinase by transition-metal ions.
    Ainsworth S; Macfarlane N
    Biochem J; 1975 Jan; 145(1):63-71. PubMed ID: 1238084
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization and sequencing of an active-site cysteine-containing peptide from the xylanase of a thermotolerant Streptomyces.
    Keskar SS; Rao MB; Deshpande VV
    Biochem J; 1992 Feb; 281 ( Pt 3)(Pt 3):601-5. PubMed ID: 1536641
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Formation of the cystine between cysteine 225 and cysteine 462 from ribonucleoside diphosphate reductase is kinetically competent.
    Erickson HK
    Biochemistry; 2000 Aug; 39(31):9241-50. PubMed ID: 10924117
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Divergent binding sites in pyruvate kinases I and II from Escherichia coli.
    Valentini G; Stoppini M; Iadarola P; Malcovati M; Ferri G; Speranza ML
    Biol Chem Hoppe Seyler; 1993 Jan; 374(1):69-74. PubMed ID: 8439398
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reciprocal cooperative effects of multiple ligand binding to pyruvate kinase.
    Nowak T; Lee MJ
    Biochemistry; 1977 Apr; 16(7):1343-50. PubMed ID: 557338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.