BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 1304380)

  • 1. The accessibility of etheno-nucleotides to collisional quenchers and the nucleotide cleft in G- and F-actin.
    Root DD; Reisler E
    Protein Sci; 1992 Aug; 1(8):1014-22. PubMed ID: 1304380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism for nucleotide exchange in monomeric actin.
    Frieden C; Patane K
    Biochemistry; 1988 May; 27(10):3812-20. PubMed ID: 3408729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain motion in actin observed by fluorescence resonance energy transfer.
    Miki M; Kouyama T
    Biochemistry; 1994 Aug; 33(33):10171-7. PubMed ID: 8060983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactions of 1-N6-ethenoadenosine nucleotides with myosin subfragment 1 and acto-subfragment 1 of skeletal and smooth muscle.
    Rosenfeld SS; Taylor EW
    J Biol Chem; 1984 Oct; 259(19):11920-9. PubMed ID: 6480589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predominant attached state of myosin cross-bridges during contraction and relaxation at low ionic strength.
    Nagano H; Yanagida T
    J Mol Biol; 1984 Aug; 177(4):769-85. PubMed ID: 6384526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic mechanism of 1-N6-etheno-2-aza-ATP and 1-N6-etheno-2-aza-ADP binding to bovine ventricular actomyosin-S1 and myofibrils.
    Smith SJ; White HD
    J Biol Chem; 1985 Dec; 260(28):15156-62. PubMed ID: 4066666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quenching of fluorescent nucleotides bound to myosin: a probe of the active-site conformation.
    Franks-Skiba K; Hwang T; Cooke R
    Biochemistry; 1994 Oct; 33(42):12720-8. PubMed ID: 7918498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angles of fluorescently labelled myosin heads and actin monomers in contracting and rigor stained muscle fiber.
    Yanagida T
    Adv Exp Med Biol; 1984; 170():397-411. PubMed ID: 6430042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin.
    Moraczewska J; Wawro B; Seguro K; Strzelecka-Golaszewska H
    Biophys J; 1999 Jul; 77(1):373-85. PubMed ID: 10388764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of nucleotide and metal ion interaction with G-actin.
    Nowak E; Strzelecka-Golaszewska H; Goody RS
    Biochemistry; 1988 Mar; 27(5):1785-92. PubMed ID: 3365424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in G-actin containing bound ATP or ADP: the Mg2+-induced conformational change requires ATP.
    Frieden C; Patane K
    Biochemistry; 1985 Jul; 24(15):4192-6. PubMed ID: 4052388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative conformational change in F-actin filament induced by the binding of heavy meromyosin.
    Ando T; Asai H
    J Biochem; 1976 May; 79(5):1043-7. PubMed ID: 783155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myosin subfragment 1 activates ATP hydrolysis on Mg(2+)-G-actin.
    Kasprzak AA
    Biochemistry; 1994 Oct; 33(41):12456-62. PubMed ID: 7918468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Random copolymerization of ATP-actin and ADP-actin.
    Ohm T; Wegner A
    Biochemistry; 1991 Nov; 30(47):11193-7. PubMed ID: 1958656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence studies of 1,N6-ethenoadenosine triphosphate bound to G-actin: the nucleotide base is inaccessible to water.
    Harvey SC; Cheung HC
    Biochem Biophys Res Commun; 1976 Dec; 73(4):865-8. PubMed ID: 15625854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics at Lys-553 of the acto-myosin interface in the weakly and strongly bound states.
    MacLean JJ; Chrin LR; Berger CL
    Biophys J; 2000 Mar; 78(3):1441-8. PubMed ID: 10692329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of the tightly bound divalent-cation-dependent and nucleotide-dependent conformation changes in G-actin using limited proteolytic digestion.
    Strzelecka-Gołaszewska H; Moraczewska J; Khaitlina SY; Mossakowska M
    Eur J Biochem; 1993 Feb; 211(3):731-42. PubMed ID: 8436131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic phosphate regulates the binding of cofilin to actin filaments.
    Muhlrad A; Pavlov D; Peyser YM; Reisler E
    FEBS J; 2006 Apr; 273(7):1488-96. PubMed ID: 16689934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kinetics of effector binding to phosphofructokinase. The binding of Mg2+-1,N6-ethenoadenosine triphosphate to the catalytic site.
    Roberts D; Kellett GL
    Biochem J; 1980 Sep; 189(3):561-7. PubMed ID: 6260083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural implications of the chemical modification of Cys(10) on actin.
    Eli-Berchoer L; Reisler E; Muhlrad A
    Biophys J; 2000 Mar; 78(3):1482-9. PubMed ID: 10692333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.