These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 13045337)
1. Studies on the fatty acid metabolism of Mycobacterium tuberculosis. IIDA I Kekkaku; 1952 Dec; 27(10):678. PubMed ID: 13045337 [No Abstract] [Full Text] [Related]
2. Studies on the fatty acid metabolism of Mycobacterium tuberculosis. IIDA I Kekkaku; 1953 Jun; 28(6):299-304; English abstract, 310-1. PubMed ID: 13085548 [No Abstract] [Full Text] [Related]
3. [Fatty acids in the human strain H-37 Ra of Mycobacterium tuberculosis]. ASSELINEAU J C R Hebd Seances Acad Sci; 1953 Dec; 237(25):1804-6. PubMed ID: 13127249 [No Abstract] [Full Text] [Related]
4. Intracellular conjugation and detoxification of palmitic acid by Mycobacterium tuberculosis. KARLSSON JL J Bacteriol; 1954 Apr; 67(4):456-9. PubMed ID: 13152057 [No Abstract] [Full Text] [Related]
5. Separation of fatty acids from tubercle bacillus by gas chromatography: identification of oleic acid. CASON J; TAVS P J Biol Chem; 1959 Jun; 234(6):1401-5. PubMed ID: 13654386 [No Abstract] [Full Text] [Related]
6. Complexity of the mixture of the higher fatty acids from the lipides of the tubercle bacillus. CASON J; FONKEN GJ J Biol Chem; 1956 May; 220(1):391-405. PubMed ID: 13319358 [No Abstract] [Full Text] [Related]
7. Persistent characteristics of the higher fatty acids from the lipides of the tubercle bacillus. ALLEN CF; CASON J J Biol Chem; 1956 May; 220(1):407-14. PubMed ID: 13319359 [No Abstract] [Full Text] [Related]
9. Complexing of fatty acids by Triton WR1339 in relation to growth of Mycobacterium tuberculosis. Hedgecock LW J Bacteriol; 1970 Aug; 103(2):520-2. PubMed ID: 4988249 [TBL] [Abstract][Full Text] [Related]
10. [Identification of Mycobacterium tuberculosis by the method of gas-liquid chromatography]. Vorob'ev AA; Badukshanova NM; Dorozhkova IR; Sukhova TG; Khodorkovskaia VA; Kassirskaia NG; Rybakova AM Probl Tuberk; 1990; (7):46-50. PubMed ID: 2122443 [TBL] [Abstract][Full Text] [Related]
11. Respiration of mycobacterium tuberculosis, strain BCG, in the presence of short chain fatty acids. PASCOE E; QUASTEL JH Can J Microbiol; 1956 May; 2(3):372-9. PubMed ID: 13316633 [No Abstract] [Full Text] [Related]
12. Radiometric measurement of differential metabolism of fatty acid by mycobacteria. Camargo EE; Kertcher JA; Larson SM; Tepper BS; Wagner HN Int J Lepr Other Mycobact Dis; 1982 Jun; 50(2):200-4. PubMed ID: 6811449 [TBL] [Abstract][Full Text] [Related]
13. The ABC transporter Rv1272c of Mycobacterium tuberculosis enhances the import of long-chain fatty acids in Escherichia coli. Martin A; Daniel J Biochem Biophys Res Commun; 2018 Feb; 496(2):667-672. PubMed ID: 29360453 [TBL] [Abstract][Full Text] [Related]
15. Direct incorporation of octanoate into long-chain fatty acids by soluble enzymes of Mycobacterium tuberculosis. Kanemasa Y; Goldman DS Biochim Biophys Acta; 1965 Jun; 98(3):476-85. PubMed ID: 4378697 [No Abstract] [Full Text] [Related]
16. Altered fatty acid metabolism due to rifampicin-resistance conferring mutations in the rpoB Gene of Mycobacterium tuberculosis: mapping the potential of pharmaco-metabolomics for global health and personalized medicine. du Preez I; Loots du T OMICS; 2012 Nov; 16(11):596-603. PubMed ID: 22966781 [TBL] [Abstract][Full Text] [Related]
17. Demonstration of mycolic acid and of phthionic acid in Mycobacterium tuberculosis. BUSCHER-DAUBENBUCHEL L; GILLISSEN G; HARTH H; TURBA F Zentralbl Bakteriol Orig; 1956 Dec; 167(4):298-306. PubMed ID: 13410038 [No Abstract] [Full Text] [Related]
18. Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities. Jackson M; Stadthagen G; Gicquel B Tuberculosis (Edinb); 2007 Mar; 87(2):78-86. PubMed ID: 17030019 [TBL] [Abstract][Full Text] [Related]
19. Fatty acid composition of phosphatidyl ethanolamine of Mycobacterium tuberculosis. Subrahmanyam D Indian J Biochem; 1965 Dec; 2(4):274-5. PubMed ID: 4222399 [No Abstract] [Full Text] [Related]
20. Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Puckett S; Trujillo C; Wang Z; Eoh H; Ioerger TR; Krieger I; Sacchettini J; Schnappinger D; Rhee KY; Ehrt S Proc Natl Acad Sci U S A; 2017 Mar; 114(11):E2225-E2232. PubMed ID: 28265055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]